VP9 Bitstream & Decoding Process Specification

Version 0.6

Adrian Grange, Google
Peter de Rivaz, Argon Design

Jonathan Hunt, Argon Design

ABSTRACT

This document defines the bitstream format and decoding process for the Google
VP9 video codec.

i Convriaht © 2016 Gooale. Inc. All Rianhts Reserved.

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Contents Page
1 S To7 o] o - S 1
2 Terms and defiNItiONS ettt et e e e e e e e e e e e e e e e e e e aae e e e e aannnnee 2
3 Symbols (and abbreviated tErMS)..........iii i 5
4 L0 0] 01T o1 (o] o TSSO S 7
4.1 ArthMEtiC OPEIatOrS ... eeeeeeeeneeeeennnnnnnnnnnnn 7
4.2 I To]Toz=] Wo] o =T =1 (o] ¢~ J T PO POPPPPPPPPPTPPP 7
4.3 R =Y [o] g = e o1=T =1 o] £ R 7
4.4 T TR o] o=T = (o] < 7
4.5 F T (o [0 4= o | ST TP PP PP PRPTPPPTIN 8
4.6 Mathematical fUNCLIONS ...ttt e et e e e e e e e e e e e e e e eeeaaaaaeanan 8
4.7 Method of describing bitstream SYNtaX...........oooiiiiii i 8
4.8 U oo o 1 10
4.9 [T Tod o] (] 11
R TR { (o 1 USSP 11
R T2 {) PSS 11
R T T = () S 11
R T (o S 11
K T PSS 11
5 Overview of the decoding process (INfOrmative)oouiiiiiiiiiiii e 12
51 0T oo) Y SR 12
5.2 ComPressing IMAGE AatA.........oiuiiiii i e e e et bt e e s s b e e e e e s aabae e e e s abbeeeeeaaes 12
5.3 Quantization and [0SSY COMPIESSIONcciiitiiiii ittt e e et e e st e e e s sbbe e e e e s aabar e e e s abeeeeeeaanes 13
54 Predicting iMage dat@...........ccuuiiiieeee e e e e e 13
55 10 (T o] =0 o 1o o I USSP 14
5.6 RS0 oT=T o] oo 1< RSSO 15
5.7 0L o =T =T 1S o] o 1SR 16
5.8 INVErSE DCT SITUCKUIE ...ttt e e e e e e e e e et e e e e e ae e e e e e e e e nnnennaeeeeaaaaaeaaan 16
5.9 INVErSE ADST SEIUCIUIEot e ettt et e e e e e e e e e et e e e eeaaeeeee e e annnennaneeeaaaaaeaaan 19
ot O 5 =Y (=Y =T g Lot § =T g1 U 19
5.1 [[T Lo [T I =T g T PSSR 20
E 0 72 O] 441 o Yo oo I =Y [T2 (] o U 20
E 0 IS TN |V o) o) g IRY/=Tox (o) gl o] =Y [T3 o) o SR 20
LSt I 11T U 20
SN oIS = Te o g T o e= Y i o] T 4 F= | o T PO PUP SRR 21
516 Reference frame SCaliNg.......c.uuiiii it 21
517 ARtNMELIC COUING ..ottt ettt e et e e s e b e e e e aabb e e e e e e nbeeas 21
5.18 Probability UPAAteSooiiiiiiiiiii e 22
STt S R O o1 o o' F= R o] o 4= | U 22
020 B o 1o | o N o1 8o [= o i o U 23
5.21 Probability CONEXES. ...t 23
IV Y A o v 4= Yo I o] (o [=] {1 o o FR PP PP PRRP P 23
LI B o oo 0 (Y U 24
524 Loop filter ordering and filtersooiii i 24
I T ol = 10 0 L= 14 0T U= 25
LI G B U o= =0 =Y U 26
6 Ty g Y] =) GO 27
6.1 FraMIE SYNMEAX ... ittt et oot e e e e e e e e e e et e e e e e e e e e e e e eeeen s 27
6.1.1 Trailing DItS SYNTAX....ciiiiiiiii ittt s e e e s e e e e e bt e e e 27
ii Copyright © 2016 Google, Inc. All Rights Reserved.

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
6.3.14
6.3.15
6.3.16
6.3.17
6.3.18
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19
6.4.20
6.4.21
6.4.22
6.4.23

RETESN PrODS SYNEAX ...eiiiiiiiiiie ittt e e st e e e s b e e e e s abbeeeeeaas 27
Uncompressed hEaAEr SYNTAX..........cuuuiiiiiiiiiee et e e e e e e e e e e e e e e e e s eenn e 28
FrameE SYNC SYNTAXuuiiiiiiiiiiiee ettt e e e e e et eenr e 30
1070] (o] i eXe] a1 Te JE=3 Y] o1 v= ¥ O PSP PRTPT 30
Frame SIZE SYNTAX ... et e e e e e e e e e e e e e n e 30
RENAET SIZE SYNEAX ... ettt e e e e e e e s e e et e e e e e e e s e e et e e e e e e e e saaenrerneee 31
Frame Size With refS SYNTaX........ocuuiiiiii e 31
ComPULE IMAGE SIZE SYNTAXeiiiiiiiiiiie ittt ettt e e et e e anb e e e e s annreeas 31
INterpolation filter SYNTAXoooi i 31
[T oI 11 (=Tl o T= L= 1Y L €= P 32
QUANLIZAtION PAraMS SYNEAX .. .ciiiiiiiiiii ittt e et e s et e e aaabb e e e e s aneneeas 32
Delta QUANTIZEN SYNTAX........eeiiiiiie ettt e e e e e e e e e e e e e e e e e e 33
Segmentation PAramMS SYNMTAX........o.uiiii it 33
Probability SYNTAXeeiiiiiiiieiee e e e e e e e et e e e e e e 34
THIE INTO SYNIAX et e e e e et e e e e b bt e e e e et b e e e e ab b e e e e e areeas 34
Tile SIZE€ CAICUIALIONcoiiiiiii e e e et e e e e e e e e s e e e ee s 34
CompPressed NEATET SYNTAXciiiiiiiiiii it e et e st e e aab e e e s aneeeeas 35
TX MOAE SYNTAX ...tteeiieieee ittt ettt e s b b e et e et e e e e e e sa s nnrnrneeeeeeeeeenaas 35
TX MOAE PrODS SYNTAX ...cci i e e e e e e e e e e e e e e e s e eee s 36
Diff Update Prob SYNTAXooiiiiiiiiiii et e e e et e nnneeees 36
Decode term SUDEXP SYNTAX......cooii e e e 36
LNV T g ol o] (o] oI o =) SRR 37
INV rECENTEI NONEQY SYNTAX ...ttt e s e e e e eeeeas 37
(070 1=)l o] o] o F =101 £=) PP 38
T] o3 o] o o =3 o=)OSR 38
INter MOAE ProDS SYNTAXccii it e e e e e e e e e e e eee s 38
Interp filter ProbS SYNTAXcoi it e e et e e e e e e e e e e e e eeeaaeas 38
INtra iNter ProbS SYNTAX.......ooi i e e e e s 38
Frame reference MO SYNTAXeoii it e sttt e e e e e e e s abbeeee e 39
Frame reference mode Probs SYNTAXeeiiiiiiiiiiiiiii et 39
Y MOAE PrODS SYNEAX. ... ciii ittt e e e e e e e e e e s e e e e e et e e e e e e e e eeenee s 40
Partition Probs SYNTAX.........ceiiiiiiiiiiie et e e e e e e e 40
MV PIODS SYNTAX.. ..ottt ettt e e e e e e s e e e e e e e e e e e e e s b n e e e et e e e e e e s e ennrnnee 40
Update MV Prob SYNTAXcoooiiiiiiiiiii ettt a e e e e e e e e e e e e aaaaaaeaeeeeeeeenennnnnnnnns 40
Setup compound referenCe MOAE SYNTAX. i i e e e e e e e e e e e e e e aaeeaeeanns 41
DECOAE IS SYNTAX ...t e e e e e e e e e e e e e e 41
Getile OffSEE SYNTAX ... et 42
DEeCOAE 8 SYNTAX ...ttt e e e e e e e e e 42
Decode Partition SYNTAX........cuiii it e e e e e e 42
DeCode DIOCK SYNTAXviiiiiiiiiie i e e e e e e e e e e e e e e e e e e 43
MOAE INFO SYNTAX .ottt e e ettt e e s e b et e e e anbe et e e s aanaeeee e s 44
Intra frame MOode iNfO SYNTAX.......eiiiiiii e 44
INtra SEgMENT A SYNEAX ..oeiiiiiiii e e e e e e e e 44
] IR 5] T €= PRSPPI 45
Segmentation feature active SYNTaXc.ueiiiiiii 45
TX SIZE SYNMEX ..ttt ittt e e et e oot e e e e e e e e et e e e e e e e e e e e e e e e e e aaan 45
Inter frame MOode iNfO SYNTAX.......eiiiii e 45
INter SEgMENT A SYNEAX ..ciiiiiiiii e e e e e e e e s 46
IS INMEEI SYNTAX ...ttt e e e e e e et e e e e e e e e e e r e e et e e e e e e a e e eeas 46
Gt SEGMENT A SYNEAX....eeiiiitiiiii ettt ettt e e st b et e e e bbbt e e s b et e e s ann e s 47
Intra bIOCK MOAE INFO SYNEAXuiiiiiiiiiie e 47
Inter bIOCK MOdeE INfO SYNEAX.......uiiii i e e 48
REF fTAMES SYNTAX ..ttt e e bttt e e s ettt e e e s bt et e e e s aaba e e e e e abbeeeeeans 49
ASSIGN MV SYNTAX ...ttt e e e e e e e e e e e e e e e et e e e e e e n e e eas 49
A o] r= PP URETTP PR PRPPPN 50
MV COMPONENT SYNTAX.....eeeeeiiiiieeeiee ettt e e e e e e et e e e e e e e s e e e e e e e e e e s e e eenrenneee 50
RESIAUAI SYNTAX ...ttt e e e e e e e e e e e e e e e e e e s e e et e e e e e e e e nnrrnee 50
GO UV SIZE SYNMEAX .ttt ettt e ettt e e e bttt e e s ettt e e e b bt e e s b b e e e annnee s 52
Get plane BIOCK SIZE SYNTAX......cciiiiiiiiiiiiie et e e e e e e e s aanreeas 52

Convriaht © 2016 Gooale. Inc. All Riahts Reserved iii

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.4.24
6.4.25
6.4.26
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
724
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.3
7.31
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
749
7.4.10
7.4.11
7.4.12
7.4.13
7.4.14

TOKEN SYNEAX .. eiiiiiiiii ettt ettt e e e e e e e e e e e e e e te e e e e et e e et e e e e e e naeanrnn 52
G SCAN SYNEAX ... ittt ettt h e e e ettt e e e o b bt e e e e ea b bt e e e e e b be e e e e e anbee e e e e abbeeeeeane 53
1070 1= 1Y 0] 7=) PP P PP PPPPPPN: 54
VoY io] g IAVZ=T o1 (o] gl o] =Y o | ex 1 o] o [55
FINA MV TEfS SYNTAX ...ttt e e e e et e e e e e st e e e e areeas 55
IS INSIAE SYNTAXeeiiiiieiiii et e oo r et e e e e e e e e e e e e et e e e e e e s e e e e e e aeeeeenaan 57
ClampP MV FEF SYNTAX....oii ittt e e b e e e et et e e e s ab b e e e e e s aabae e e e s abbeeeeeanes 57
ClampP MV FOW SYNEAX ..iuiieiiieiitte ettt ettt e e ettt e e e o b bt e e e e aa b bt e e e e sbbe e e e e s anbaeeeesabbeeeeeanes 57
Clamp MV COI SYNMTAX ..ottt e et e e e bt e e e e aa b bt e e e e abb e e e e e s anbaeeeesabbeeeeeanes 58
A MV T TIST SYNTAX ...t e e e e 58
If same ref frame add SYNTAXooiuiiiiiii e 58
If diff ref frame @dd SYNTAX........oooiiiii e 58
SCAIE MV SYNTAX .ttt h et e e oo b et e e e o bt et e e e e aa b et e e e e abbe e e e e aanbae e e e e abbeeeeeane 59
Gt DIOCK MV SYNTAX ...ttt ettt e e s e b b et e e e s aa b e e e e s abbeeeeeanes 59
Get SUD DIOCK MV SYNTAX ...ueiiiiiiiiiiie ettt e e bt e et e e e e e sbbeeeeeanes 59
FiNd best ref MVS SYNTAX....ccoi e 59
USE MV NP SYNTAX ...eeiiiiieeeiie ittt e et e e e e e e s e e et e e e e e e s e e nneeeeeeeeeenaas 60
APPENT SUDBXE MVS SYNTAX ..eeeeiiiiiieeieii ittt e e e e e e e ettt e e e e e e e e e e s e s s nneeeeeeeeeaaaeeaesaannnenneeeeeaeaaeeaaann 60
BitStream SEMANTICS ... et e e e et ea e an 62
L =Y LIRS T g =T oL o 62
Trailing DitS SEME@NTICSuviiiieiiii et e e e e e e e 62
Refresh probs SEMANTICSt et e e e e e e e e e e e e e eaaeeeean 62
Uncompressed header SEMaNTICSo e ae 62
Frame SYNC SEMANTICS. ...ttt e e e et e e e e e e s e e e e e e e e e 64
1070] (o] deXe] a1 To JE=T=T 0 0 F=1 oL 1T T PP PPPPPTPPRPN: 64
Frame SiZe SEMaNTICS.o e et e e et e et e e ee e et e e an 65
ReNder SiZ€ SEMANTICS ...t e e e e e e e e e et et e e e e eeeee st e e e e e e e e an 65
Frame size with refS SEMANTICSooiii it a e e e e 65
Compute IMAge SIiZE SEMEANTICS.....ccciiiiiiii ittt e e s b e e et e e e e e rbbeeeeeaanes 66
Interpolation filter SEMANTICSoii it e e e e e e e e e e e e e aaaeeeean 66
(oY) oI 11 (=T =TT g F= 1 SR 66
QuUANIZAtiON PArAMS SYNMEAXutiiiiiiiiie et e e e et e e e s s b b e e e e e s aabee e e e s abbeeeeeaaes 67
Segmentation ParamMS SYNTAXcoii it e s e e ee e e 67
Tile INFO SEMIANTICS ... ettt et e e e e ettt e e e e e e e e e e e e e nnn e eeeeeaaaeeeeaaaannnnnes 68
Compressed header SEMANTICS i i e e e e e e e e et r e e e e e e e e e e e e nnnnneneeeeeas 68
TX MOAE SEMANTICS ...ttt a e e e e e e e e e e e e e e e aeaeeeeeeeeeaeaneennnsnnnnnnnn 68
Diff update prob SEMANTICSt e e et e e e e e e e e aaaeeeaan 69
Decode term Subexp SEMEANTICSoooiiiiii et as 69
INV remap Prob SEMEANTICS ... e e e e e e e e e e e e e e e aeeeeeeeeeeeeenansennnennnnnnnn 69
1070 o] ro] o JECT=Y o =T o1 (o7 RSSO 69
Frame reference mode SEMaNTICSoei ittt e e e e e e e e e e e 69
Update MV Prob SEMANTiCScoi e e ettt an 69
I =N =Y P RUUPUS 70
Decode tileS SEMANTICS.ot e e ettt e e e ee e e et an 70
Decode tile SEMEANTICS ... e e e e e e e e e e et e e e e e e een e e e an 70
Decode partition SEMaNTICSoooii it as 70
(DYoo lo (ol o] (oTed [Q=T=T0 o =T g [71
Intra frame mode iNfO SEMANTICSooi i a e e 71
Intra and inter segment id SEMANTICS...........uuiiiiiiiiiei e e e 71
T] o JE=T=T 0 =T (o7 RSSO 72
TX SIZE SEMANTICS -t e oottt ettt a e e e e e e e e e e e e aeaeaeeeeeeeaeaeaneennnnnnnnnnnn 72
ST (=T ST ¢ g =T oL (o USSP 72
Intra block Mode INfO SEMANTICSeii i e e e e e e e e e 72
Inter block MOde INfO SEMANTICSeiei i e e e e e e e e e e e e e 72
Ref frames SEMANTICSoo ittt e e e e e et r e e e e e e e e e e e e nnen e e eeaaaaeeaaan 73
VST g = oL o 73
Y AV eTo] g gTeTo] g Lo N ET=T 0 4 F= T ol (o 73
Copyright © 2016 Google, Inc. All Rights Reserved.

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

A S 5 =TT (o [E= LT =Y 0BT o oSSR 74
At o] =T g Y=Y = oL (oSS 74
A I A O o T=Y Y=Y 4 =T o oSS 75
8 DECOAING PrOCESS.ttt e et oo ettt e e e e e e e s e e e e et e e e e e e ee e s nbn e s eeeeeeeeeeenaaannnrnnee 76
8.1 L T=T =T o | SO UUREER 76
8.2 Frame order CONSIFAINESooi i e e e e e e e e e e e e e e e e e eeeeeeeeeenennnnns 76
8.3 L0 CT T oTo T g (3 o] oo =11 O UURRRR 76
8.4 Probability adaptation PrOCESS e e e e e e e e e e e e e eeeeeananaaaas 77
g B |V =T (o TN o] o] o 3 o] o o7 R 77
|V =T (o TN o] fo] o 1S o] oY= SR 77
8.4.3 Coefficient probability adaption PrOCESS. 78
8.4.4 Non coefficient probability adaption ProCESSue i 79
8.5 PrediClion PrOCESSESottt oo oottt ettt a e e e e e e e e e e e e e aaeaaaaeeeeeeeeennnsnnnnnnns 80
S T B) (=W o] (=T [Tox 1 T0] g o] o o= =1 SR 80
RS N |) (=1l o] (=To [Tox 1 Te] g T'e] oo =<1 SR 83
8.6 Reconstruction and dequantization a e 89
8.6.1 Dequantization fUNCHONS e e e e e e e e et e e e e e e e e e e e e e annnenneeeeaeeeeas 89
G S =Yoo 0 F] 1 U o o] o Lo S 94
8.7 TN oI =T a1 o] o o o oYU 94
A0t Y 1 T = g T o o 1SS 94
8.7.2 2D INVEISE TranSTOIM . . o i ettt e oottt et e e e e e e e e e st eeeeeeaaaeee e e e e nnnnneneeaaaeens 100
8.8 (oY) o I8 11 0= gl o] oY== SO 100
8.8.1 LoOp filter frame NIt PrOCESSu et e e et e e e e e e e e e e e e e e nnnenneeeeeeaeens 101
8.8.2 SuperbloCk 100D filtEF PrOCESSueeiiiiiee ettt e e e e e e e e e e e e nneeneeeeeaaaaens 101
oS R B 11 (T T Y o] o o= T SRR 103
8.8.4 Adaptive filter Strength PrOCESSo ittt e e e e e e e e e eeeeaeeas 104
S I IS = 10 o] o] (S 11 (=Y T aTo T o] 0T = 1= SRR 105
8.9 L@ 10} TU) o] Yo7 Y- OSSR 109
8.10 Reference frame UPAate PrOCESSooiiiii it e et e e e e e e e e e e et ee e e e e e e e e e e e s e nnnenneeeeeaaaens 110
9 Parsing PrOCESSo e et e e e e e e et e e e e e e n e 111
9.1 Parsing ProCess fOr f(N) ... e 111
9.2 Parsing process for BooIEan AECOTETcoouiiiiiiiiiiiii e 111
9.2.1 Initialization process for Boolean AECOAETo it e e e e 111
9.2.2 B0O0IEaN AECOTING PrOCESS ...cciiutiiiieiiititeee e ittt ettt e e bt e e e s aa b et e e e ab bt e e e e s abbe e e e e s aabbe e e e s aabbaeeeesaabrneeeeaas 111
9.2.3 EXxit process for Boolean AECOAENoooi ittt e e e e e e e e e e eeaeaeens 112
9.2.4 Parsing process for read_Ieral....... ... 112
9.3 Parsing process for tree encoded syntax €lements ... 112
1S 0 N B I =TI 7= =Yoo o o] o LY SO 113
9.3.2 Probability SEIECHON PrOCESS........ciiiiiiiiiie ittt e et e e e e 116
9.3.3 Tree dECOUING PrOCESSueiiiiiitiiee ettt e e ettt e e ettt e e e e b bt e e e e aa bttt e e e s bt et e e e s abbe e e e e e aabbeeeeeaasbeeeeesaabeeeeeeaas 125
9.3.4 Syntax element COUNTING PrOCESSuiiiiiiiiiiiiie ittt e e e s b et e e s s bt e e e e e s abreeeeeaas 125
10 Yo Lo 11 Te] g =T I e= T o] =T RS 127
10.1 S To= 1 = o] [3SR 127
LT O 1YY] o] g T £= o] TSP 131
10.3 Pareto probability tabIe........ oo e a e e e e e 135
10.4 Fixed probability tabIes........ oot e e e e e e e e e e e e e anas 138
10.5 Default probability tablescoo i 141
ANNEX A LEVEIS ...ttt e oo oo oo et e e a2 e e e e e e et e eeeeeeaeaeeesestntn s e e e e e e e e e e e aeaaaaaaaaaes 162
A1 L YT TSR 162
ANNEX B SUPEITTAMES ...ttt oottt et e e e e e e e e e e e et et eeeeaaeaeeesaaannnnsnneeeeaaaaaeeaaaanns 163
B.1 OVBIVIBW ..ttt ettt ettt oo oo ettt ettt e e e e e e e e e e aaata e e e eeeeeaeeeeeaaamnnnseeeeeeeaaaeeeaaaannssnsneeeaaaaeeeanaanns 163
B.2 SUPEITTAME SYNTAX ..ttt e ettt e e e e e e s e e b et e e s et e e e e e bt e e e e e aneee 163
o S YW | o =Y o =T 0 L= T T [GO 163
B.2.2 Superframe header SYNTAX.........cooiiiiiiiiiiiiiie e 163
B.3 SUPEIrAME SEMEANTICSottt e e et oottt e e e e e e e e e e e e e eeeeeeeeaeaeeeaaa e nnnennneeeaaaaeeeaaaanns 163
B.4 S TU o1 g =T g ST 0 F= 1 T SRR 164

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved Vv

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Bibliography

vi

Copyright © 2016 Google, Inc. All Rights Reserved.

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

1 Scope

This document specifies the Google VP9 bitstream format and decoding process.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

2 Terms and definitions

For the purposes of this document, the following terms and definitions apply:

21

2.2
23
24

25
2.6
2.7
2.8

29

210
2.1

212

213

214
215
216
217
218

219
2.20

2.21
2.22

2.23
2.24

2.25
2.26

AC coefficient: Any transform coefficient whose frequency indices are non-zero in at least one
dimension.

Altref (Alternative reference frame): A frame that can be used in inter coding.
Bitstream: The sequence of bits generated by encoding a sequence of frames.

Bit string: An ordered string with limited number of bits. The left most bit is the most significant bit
(MSB), the right most bit is the least significant bit (LSB).

Block: A square or rectangular region of pixels consisting of one Luma and two Chroma matrices.
Block scan: A specified serial ordering of quantized coefficients.
Byte: An 8-bit bit string.

Byte alignment: One bit is byte aligned if the position of the bit is an integer multiple of eight from
the position of the first bit in the bitstream.

Chroma: A sample value matrix or a single sample value of one of the two color difference signals.
NOTE - Symbols of chroma are U and V.

Coded frame: The representation of one frame before the decoding process.

Component: One of the three sample value matrices (one luma matrix and two chroma matrices) or
its single sample value.

Compound prediction: a type of inter prediction where sample values are computed by blending
together predictions from two different reference frames.

Compressed header: An arithmetically encoded description of frame level settings of transform
mode and probability adjustments.

DC coefficient: A transform coefficient whose frequency indices are zero in both dimensions.
Decoded frame: The frame reconstructed out of the bitstream by the decoder.

Decoder: One embodiment of the decoding process.

Decoding process: The process that derives decoded frames from syntax elements.

Dequantization: The process in which transform coefficients are obtained by scaling the quantized
coefficients.

Encoder: One embodiment of the encoding process.

Encoding process: A process not specified in this Specification that generates the bitstream that
conforms to the description provided in this document.

Flag: A binary variable.

Frame: The representation of video signals in the space domain, composed of one luma sample
matrix (Y) and two chroma sample matrices (U and V).

Frame context: A set of probabilities used in the decoding process.

Golden frame: A frame that can be used in inter coding. Typically the golden frame is encoded with
higher quality and is used as a reference for multiple inter frames.

Inter coding: Coding one block or frame using inter prediction.

Inter frame: A frame compressed by referencing previously decoded frames and which may use
intra prediction or inter prediction.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

2.27

2.28

2.29

2.30

2.31

2.32

233

2.34
235

2.36

237

2.38

2.39

2.40

2.41
242

243

2.44
2.45

2.46
247

2.48

2.49
2.50

Inter prediction: The process of deriving the prediction value for the current frame using previously
decoded frames.

Intra coding: Coding one block or frame using intra prediction.
Intra frame: A frame compressed using only intra prediction which can be independently decoded.

Intra-only frame: A type of intra frame that does not reset the decoding process.

NOTE — A key frame is different to an intra-only frame even though both only use intra prediction. The
difference is that a key frame fully resets the decoding process.

Intra prediction: The process of deriving the prediction value for the current sample using previously
decoded sample values in the same decoded frame.

Inverse transform: The process in which a fransform coefficient matrix is transformed into a spatial
sample value matrix.

Key frame: A frame where the decoding process is reset. Key frames, and following frames, are
always decodable without access to preceding frames. A key frame only uses intra prediction.

Level: A defined set of constraints on the values for the syntax elements and variables.

Loop filter: A filtering process applied to the reconstruction intended to reduce the visibility of block
edges.

Luma: A sample value matrix or a single sample value representing the monochrome signal related
to the primary colors.

NOTE — The symbol representing lumais Y.

Mode info: A header describing one or more blocks. Blocks of size 8x8 and larger are described
with a single mode info header. Blocks of size less than 8x8 share a mode info header that covers
the whole 8x8 block of luma samples.

Mode info block: A luma sample value block of size 8x8 or larger and its two corresponding chroma
sample value blocks. A mode info block has a single mode info header.

Motion vector: A two-dimensional vector used for inter prediction which refers the current frame to
the reference frame, the value of which provides the coordinate offsets from a location in the current
frame to a location in the reference frame.

Parse: The procedure of getting the syntax element from the bitstream.
Prediction: The implementation of the prediction process consisting of either inter or intra prediction.

Prediction process: The process of estimating the decoded sample value or data element using a
predictor.

Prediction value: The value, which is the combination of the previously decoded sample values or
data elements, used in the decoding process of the next sample value or data element.

Profile: A subset of syntax, semantics and algorithms defined in a part.

Quantization parameter: A variable used for scaling the quantized coefficients in the decoding
process.

Quantized coefficient: A fransform coefficient before dequantization.

Raster scan: Maps a two dimensional rectangular raster into a one dimensional raster, in which the
entry of the one dimensional raster starts from the first row of the two dimensional raster, and the
scanning then goes through the second row and the third row, and so on. Each raster row is scanned
in left to right order.

Reconstruction: Obtaining the addition of the decoded residual and the corresponding prediction
values.

Reference frame: A previously decoded frame used during inter prediction.

Reserved: A special syntax element value which may be used to extend this part in the future.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved 3

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

2.51

2.52
2.53

2.54

2.55

2.56

2.57

2.58

2.59
2.60

2.61

2.62

2.63

Residual: The differences between the reconstructed samples and the corresponding prediction
values.

Sample: The basic elements that compose the frame.

Sample value: The value of a sample. This is an integer from 0 to 255 (inclusive) for 8-bit frames,
from 0 to 1023 (inclusive) for 10-bit frames, and from 0 to 4095 (inclusive) for 12-bit frames.

Segmentation map: a 3-bit number containing the segment affiliation for each 8x8 block in the
image. The segmentation map persists across frames.

Sequence: The highest level syntax structure of coding bitstream, including one or several
consecutive coded frames.

Subblock: A 4x4, 4x8, or 8x4 block. All the subblocks within an 8x8 block share a single mode info
header.

Superblock: A square block of 64x64 pixels that consists of either 1 or 2 mode info blocks or is
recursively partitioned into 4 32x32 blocks, which themselves can be further partitioned.

Superframe: a chunk of data containing one or more coded frames plus an index at the end
describing the number and sizes of the coded frames.

Syntax element: An element of data represented in the bitstream.

Tile: a rectangular region of the frame that is intended to be able to be decoded and encoded
independently, although loop-filtering across tile edges may still be applied.
NOTE - For VP9 this intention is only partially met. Partitioning into columns works as expected, but
partitioning into rows does not. The decode of a tile depends on the decode of the tile above.

Transform block: A square transform coefficient matrix, used as input to the inverse transform
process.

Transform coefficient: A scalar value, considered to be in a frequency domain, contained in a
transform block.

Uncompressed header: High level description of the frame to be decoded that is encoded without
the use of arithmetic encoding.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

3 Symbols (and abbreviated terms)

DCT: Discrete Cosine Transform

31st March 2016

ADST: Asymmetric Discrete Sine Transform

LSB: Least Significant Bit
MSB: Most Significant Bit

WHT: Walsh Hadamard Transform

The specification makes use of a number of constant integers. Constants that relate to the semantics of a
particular syntax element are defined in section 7. Additional constants are defined below:

Symbol name Value | Description
REFS_PER_FRAME 3 Each inter frame can use up to 3 frames for reference
MV_FR_SIZE 4 Number of values that can be decoded for mv_fr
MVREF_NEIGHBOURS 8 Number of positions to search in motion vector prediction
BLOCK_SIZE_GROUPS 4 Number of contexts when decoding intra_mode
BLOCK_SIZES 13 Number of different block sizes used
BLOCK_INVALID 14 Sentinel value to mark partition choices that are illegal
PARTITION_CONTEXTS 16 Number of contexts when decoding partition
MI_SIZE 8 Smallest size of a mode info block

Minimum width of a tile in units of superblocks (although
MIN_TILE_WIDTH_B64 4 tiles on the right hand edge can be narrower)
MAX_TILE_WIDTH_B64 64 Maximum width of a tile in units of superblocks
MAX_MV_REF_CANDIDATES 2 Number of motion vectors returned by find_mv_refs process
NUM_REF_FRAMES 8 Number of frames that can be stored for future reference
MAX_REF_FRAMES 4 Number of values that can be derived for ref frame
IS_INTER_CONTEXTS 4 Number of contexts for is_inter
COMP_MODE_CONTEXTS 5 Number of contexts for comp_mode
REF_CONTEXTS 5 Number of contexts for single_ref and comp_ref
MAX_SEGMENTS 8 Number of segments allowed in segmentation map
SEG_LVL_ALT_Q 0 Index for quantizer segment feature
SEG_LVL ALT L 1 Index for loop filter segment feature
SEG_LVL_REF_FRAME 2 Index for reference frame segment feature
SEG_LVL_SKIP 3 Index for skip segment feature
SEG_LVL_MAX 4 Number of segment features
BLOCK_TYPES 2 Number of different plane types (Y or UV)
REF_TYPES 2 Number of different prediction types (intra or inter)
COEF_BANDS 6 Number of coefficient bands
PREV_COEF_CONTEXTS 6 Number of contexts for decoding coefficients

Number of coefficient probabilities that are directly
UNCONSTRAINED_NODES 3 transmitted
TX_SIZE_CONTEXTS 2 Number of contexts for transform size
SWITCHABLE_FILTERS 3 Number of values for interp_filter

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

INTERP_FILTER_CONTEXTS 4 Number of contexts for interp_filter

SKIP_CONTEXTS 3 Number of contexts for decoding skip

PARTITION_TYPES 4 Number of values for partition

TX_SIZES 4 Number of values for tx_size

TX_MODES 5 Number of values for tx_mode

DCT_DCT 0 Inverse transform rows with DCT and columns with DCT

ADST_DCT 1 Inverse transform rows with DCT and columns with ADST

DCT_ADST 2 Inverse transform rows with ADST and columns with DCT

ADST_ADST 3 Inverse transform rows with ADST and columns with ADST

MB_MODE_COUNT 14 Number of values for y_mode

INTRA_MODES 10 Number of values for intra_mode

INTER_MODES Number of values for inter_mode

INTER_MODE_CONTEXTS Number of contexts for inter_mode

MV _JOINTS Number of values for mv_joint

MV _CLASSES 11 Number of values for mv_class

CLASSO_SIZE 2 Number of values for mv_class0_bit

MV_OFFSET_BITS 10 Maximum number of bits for decoding motion vectors

MAX_PROB 255 Number of values allowed for a probability adjustment

MAX_MODE_LF_DELTAS 2 Number of different mode types for loop filtering

COMPANDED_MVREF_THRESH 8 Threshold at which motion vectors are considered large

MAX_LOOP_FILTER 63 Maximum value used for loop filtering

REF_SCALE_SHIFT 14 Number of bits of precision when scaling reference frames

SUBPEL_BITS 4 Number of bits of precision when performing inter prediction

SUBPEL_SHIFTS 16 1 << SUBPEL_BITS

SUBPEL_MASK 15 SUBPEL_SHIFTS - 1

MV_BORDER 128 Value used when clipping motion vectors

INTERP_EXTEND 4 Value used when clipping motion vectors

BORDERINPIXELS 160 Value used when clipping motion vectors

MAX_UPDATE_FACTOR 128 Value used in adapting probabilities

COUNT_SAT 20 Value used in adapting probabilities

BOTH_ZERO 0 Both candidates use ZEROMV

ZERO_PLUS_PREDICTED One candidate uses ZEROMV, one uses NEARMV or
1 NEARESTMV

BOTH_PREDICTED 2 Both candidates use NEARMV or NEARESTMV

NEW_PLUS NON_INTRA 3 One candidate uses NEWMV, one uses ZEROMV

BOTH_NEW 4 Both candidates use NEWMYV

INTRA_PLUS_NON_INTRA 5 One candidate uses intra prediction, one uses inter prediction

BOTH_INTRA 6 Both candidates use intra prediction

INVALID_CASE 9 Sentinel value marking a case that can never occur

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

4 Conventions

The mathematical operators and their precedence rules used to describe this Specification are similar to those
used in the C programming language. However, the operation of integer division with truncation is specifically
defined.

In addition, an array with 2 elements used to hold a motion vector (indicated by the variable name ending with
the letters Mv or Mvs) can be accessed using either normal array notation (e.g. Mv[0] and Mv[1]), or by just
the name (e.g. Mv). The only operations defined when using the name are assignment and equality/inequality
testing. Assignment of an array is represented using the normal notation A = B and is specified to mean the
same as doing both the individual assignments A0]=B[0]and A[1]=B[1]. Equality testing of 2 motion
vectors is represented using the notation A == B and is specified to mean the same as (A 0] == B[0] &&
A[1]1==B[1]). Inequality testing is defined as A != B and is specified to mean the same as (A[0]!=B[0]|
A[1]1!=B[1]).

When a variable is said to be representable by a signed integer with x bits, it means that the variable is
greater than or equal to -(1<<(x-1)), and that the variable is less than or equal to (1<<(x-1))-1.

4.1 Arithmetic operators

+ Addition

- Subtraction (as a binary operator) or negation (as a unary prefix operator)

* Multiplication

/ Integer division with truncation of the result toward zero. For example, 7/4 and -7/-4 are

truncated to 1 and -7/4 and 7/-4 are truncated to -1.

a%b Remainder from division of a by b. Both a and b are positive integers.

4.2 Logical operators
a&&b Logical AND operation between a and b
allb Logical OR operation between a and b

! Logical NOT operation.

4.3 Relational operators

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

I= Not equal to

4.4 Bitwise operators

& AND operation

| OR operation

~ Negation operation

a>>b Shift “a” in 2’s complement binary integer representation format to the right by b bit positions.

This operator is only used with b being a non-negative integer. Bits shifted into the MSBs
as a result of the right shift have a value equal to the MSB of “a” prior to the shift operation.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved 7

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

a<<b Shift “a@” in 2's complement binary integer representation format to the left by b bit positions.
This operator is only used with b being a non-negative integer. Bits shifted into the LSBs as
a result of the left shift have a value equal to 0.

4.5 Assignment
= Assignment operator

++ Increment, x++ is equivalent to x = x + 1. When this operator is used for an array index, the
variable value is obtained before the auto increment operation

-- Decrement, i.e. x-- is equivalent to x = x - 1. When this operator is used for an array index,
the variable value is obtained before the auto decrement operation

+= Addition assignment operator, for example x += 3 corresponds to x = x + 3

-= Subtraction assignment operator, for example x -= 3 corresponds to x = x - 3

4.6 Mathematical functions

The following mathematical functions (Abs, Clip3, Clip1, Min, Max, and Round2) are defined as follows:

x; x=0
Abs(x) = -x; x<0
X, z<X

Clip3(x,y,2)={ »; z>y
z; otherwise

Clipl(x) = Clip3(0, (1 << BitDepth) - 1, x)

) X, xX<=Yy
Min(x,y) =

y, x>y

X, x>=Y
Max(x, y) =

¥, X<y

Round2(x,n)=(x+(1<<(n-1)))>>n

4.7 Method of describing bitstream syntax

The description style of the syntax is similar to the C programming language. Syntax elements in the bitstream
are represented in bold type. Each syntax element is described by its name (using only lower case letters with
underscore characters) and a descriptor for its method of coded representation. The decoding process
behaves according to the value of the syntax element and to the values of previously decoded syntax
elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e.
not bold) type. If the value of a syntax element is being computed (e.g. being written with a default value
instead of being coded in the bitstream), it also appears in regular type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values.
Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter
and without any underscore characters. Variables starting with an upper case letter are derived for the
decoding of the current syntax structure and all depending syntax structures. These variables may be used in

8 Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

the decoding process for later syntax structures. Variables starting with a lower case letter are only used
within the process from which they are derived.

Constant values appear in all upper case letters with underscore characters.
Constant lookup tables appear in all lower case letters with underscore characters.

Hexadecimal notation, indicated by prefixing the hexadecimal number by “Ox”, may be used when the number
of bits is an integer multiple of 4. For example, “Ox1a” represents a bit string “0001 1010”.

Binary notation is indicated by prefixing the binary number by “Ob”. For example, 0b00011010 represents a bit
string “0001 1010”. Binary numbers may include underscore characters to enhance readability. If present,
the underscore characters appear every 4 binary digits starting from the LSB. For example, 0b11010 may
also be written as 0b1_1010.

A value equal to O represents a FALSE condition in a test statement. The value TRUE is represented by any
value not equal to 0.

The following table lists examples of the syntax specification format. When syntax_element appears (with
bold face font), it specifies that this syntax element is parsed from the bitstream.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved 9

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Type
/* A statement can be a syntax element with associated descriptor or can be an
expression used to specify its existence, type, and value, as in the following examples
*/
syntax_element f(1)

/* A group of statements enclosed in brackets is a compound statement and is treated
functionally as a single statement. */

{

Statement

Statement

/* A “while” structure specifies that the statement is to be evaluated repeatedly while
the condition remains true. */

while (condition)

Statement

/* A “do ... while” structure executes the statement once, and then tests the condition.
It repeatedly evaluates the statement while the condition remains true. */

Do

Statement

while (condition)

/* An “if ... else” structure tests the condition first. If it is true, the primary statement is
evaluated. Otherwise, the alternative statement is evaluated. If the alternative
statement is unnecessary to be evaluated, the “else” and corresponding alternative
statement can be omitted. */

if (condition)

Primary statement

Else

Alternative statement

I* A “for” structure evaluates the initial statement at the beginning then tests the
condition. If it is true, the primary and subsequent statements are evaluated until the
condition becomes false. */

for (initial statement; condition; subsequent statement)

Primary statement

4.8 Functions

Functions used for syntax description are specified in this section.

10 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The specification of these functions makes use of a bitstream position indicator. This bitstream position
indicator locates the position of the bit that is going to be read next.

get_position(): Return the value of the bitstream position indicator.

init_bool(sz): Initialize the arithmetic decode process for the boolean decoder with a size of sz bytes
as specified in section 9.2.1.

exit_bool(): Exit the arithmetic decode process as described in section 9.2.3.
4.9 Descriptors

The following descriptors specify the parsing of syntax elements. Lower case descriptors specify syntax
elements that are represented by a fixed integer number of bits in the bitstream; upper case descriptors
specify syntax elements that are represented by arithmetic coding.

4.9.1 f(n)

Unsigned n-bit number appearing directly in the bitstream. The bits are read from high to low order. The
parsing process specified in section 9.1 is invoked and the syntax element is set equal to the return value.

49.2 s(n)

Signed integer using n bits for the value and 1 bit for a sign flag. The parsing process for this descriptor is
specified below:

s(n) { Type
value f(n)
sign f(1)
return sign ? -value : value
}
4.9.3 B(p)

A single arithmetic encoded bit with estimated probability p/256 of being 0. The syntax element is set equal to
the return value of read_bool(p) (see section 9.2.2 for a specification of this process).

4.9.4 L(n)

Unsigned arithmetic encoded n-bit number encoded as n flags (a "literal"). The bits are read from high to low
order. The syntax element is set equal to the return value of read_literal(n) (see section 9.2.4 for a
specification of this process).

495 T

An arithmetic tree encoded value from a small alphabet. Such values represent the leaves of a small binary
tree. The (non-leaf) nodes of the tree have associated probabilities p and are represented by B(p). A zero
represents choosing the left branch below the current node and a one represents choosing the right branch.
Each element of this type defined in this document has an associated table of values defined in this document.
Reference is made to those tables when required. (See section 9.3 for the specification of this process).

Every value (leaf) whose tree depth is x is decoded using x B(p) values.

There are many ways that a given alphabet can be represented. The choice of tree has little impact on data
rate but does affect decoder performance. The trees used by VP9 are chosen to (on average) minimize the
number of calls to read_bool (the function used to extract B(p) from the bitstream). This is equivalent to
shaping the tree so that values that are more probable have smaller tree depth than do values that are less
probable.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 11

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

5 Overview of the decoding process (Informative)

The purpose of this section is to provide a gentler introduction to the features and motivation of the VP9
specification for readers who are less familiar with video codecs. This section is just provided for background
and is not an integral part of the specification.

5.1 Purpose of VP9

This specification defines the VP9 video compression format which is a bandwidth-efficient way of storing and
transmitting video sequences. Video data is very high bandwidth (e.g. a video of width 1920 pixels, and
height 1080 pixels may contain 30 frames every second. Each pixel needs around 12 bits resulting in a
bandwidth of 1920*1080*30*12 = 746 million bits per second.) The goal of VP9 is to provide a way that this
video can be stored in a compressed form that uses orders of magnitude fewer bits.

This specification describes the decoding process that takes a sequence of compressed frames and turns it
into a sequence of decompressed video frames that can be displayed. All VP9 compliant decoders must
decode compressed frames in exactly the same way.

Note that the encoding process is not described here. There are many ways of choosing how to encode the
frames. Different ways can be better or worse depending on how much they change the source image in
ways that matter to the human visual system and how many bits they end up using.

5.2 Compressing image data

Suppose we have some 8-bit image data to compress and we zoom right into the image until we see the
individual pixels in a 4x4 grid - for the moment we ignore color so each pixel is represented a single value
from 0 (black) to 255 (white):

162 160 160 158
161 160 161 160
159 161 160 159
160 160 162 160

We have sixteen 8 bit numbers here which need 16*8=128 bits to store in a raw format. However, this part of
the image is so flat that we could probably represent it as a flat area with a single value of 160 without an
observer noticing any difference. This would only need 8 bits.

Similarly, suppose we had an area that looked like this:

10 20 30 40
10 20 30 40
10 20 30 40
10 20 30 40

In this case the image gradually increases from left to right so if we had some way of specifying the slope we
could represent all 16 values with fewer bits.

VP9 approaches this is by means of a reversible transform that adjusts the numbers to try and make most
numbers small and a few numbers large. The essence of the approach is to take two numbers (e.g. 162 and
160) and transform these into the sum of the numbers, and the difference between the numbers
(162+160=322 and 162-160=2). If the decoder is given the 322 and 2 it can reconstruct the original numbers
by computing the sum and difference divided by two (322+2)/2 = 162 and (322-2)/2 = 160. The full transform
takes the sum and differences of pairs of pixels, and performs further similar operations on both the rows and
the columns.

Overall this results in a transform that takes the 16 original pixels into 16 transformed values. The
transformed values are still in a square grid, but now the axes represent horizontal and vertical frequency.

12 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

This means that if the image is flat the transform will have just a single non-zero coefficient in the top left
(called the DC coefficient).

This transform is useful because we can compact a block of similar pixel values into a smaller number of non-
zero transform coefficients in the frequency domain, so that the transformed coefficients can typically be
represented by fewer bits than the original.

5.3 Quantization and lossy compression

In the example above our almost flat image would transform into a large DC coefficient and small values for
the other coefficients (called AC coefficients). Although this is already an improvement, we can compress
better by quantizing the coefficients. This means that we divide the coefficients by a quantization factor
before encoding them, and then in the decode process multiply by the quantization factor.

For example, suppose that we used a quantization factor of 10. Instead of sending the numbers 322 and 2,
we would instead send 322/10=32 and 2/10=0 (where we have rounded down to keep the numbers as
integers). In the decoding process we would compute 32*10=320 and 0*10=0, followed by the transform
(320+0)/2=160 and (320-0)/2 = 160.

So this has resulted in the decode of two values (160 and 160) that are close, but not exactly the same as our
source image for the benefit of only needing to transmit the numbers 32 and 0. As we no longer decode to an
exact match of the source data, this is known as lossy compression.

Lossy compression is used for most broadcast videos as it results in large bandwidth savings, but for some
applications (such as video editing) it is useful to be able to use lossless compression. Lossless compression
avoids the growth of the small errors introduced by each repeated application of lossy compression if the
same video sequence were to be repeatedly decompressed and recompressed.

VP9 supports both lossy and lossless coding. Lossless coding is indicated by using the smallest quantization
factor and this automatically switches to use a perfectly invertible transform known as the Walsh-Hadamard
transform.

5.4 Predicting image data

Suppose we are part way through decoding an image and have decoded the pixels shown below.

160 160 160 200 200
160 ? ? ? ?
160 ? ? ? ?
160 ? ? ? ?
160 ? ? ? ?

The green cells represent pixels that we have already decoded, while the question marks represent a 4 by 4
block of pixels that we are about to decode.

It seems natural to predict that some of the missing pixels on the left are at least close to the value 160 even
before we have seen them, while some of the ones on the right are probably close to 200. However, it is quite
possible that the image looks like:

160 160 160 200 200

160 160 160 200 200

160 160 160 200 200

160 160 160 200 200

160 160 160 200 200
or like

160 160 160 200 200

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 13

VP9 Bitstream & Decoding Process Specification - v0.6

160 160 160 200 200
160 160 160 160 200
160 160 160 160 160
160 160 160 160 160

31st March 2016

VP9 contains what is called an intra mode that specifies a direction such as vertical for the first case, or 45
degrees for the second case. When decoding a block the decoder first reads the intra mode, and uses that to
filter already decoded pixels from the current frame to form a prediction for the contents of the block. This is
known as intra prediction and this method is called decoding an intra block.

Of course, the actual content of our source image data is unlikely to be exactly the same as the prediction.

Suppose the actual contents are:

160 160 200 200
160 160 200 200
170 170 210 210
170 170 210 210

Consider the residual block. This is defined to be the difference between the prediction (assume we have
been instructed to use vertical prediction) and the source image:

0 0 0 0
0 0 0 0
10 10 10 10
10 10 10 10

The residual only contains small numbers, so is cheaper to represent than the original contents.

In VP9 all blocks are represented by some information specifying how to predict the contents of the block (in
this case the intra mode), plus transform coefficients of the residual block. The decoder works by first
computing the prediction, and then inverse transforming the transform coefficients and adding the result (the
residual) to this prediction.

This process is followed even for the first blocks in the video where we do not have any decoded pixels. In
these cases the decoder pretends that it has decoded pixels with a fixed value for the off-screen locations.

5.5

Suppose we are now trying to compress a whole video sequence.

Inter prediction

Consider what we can predict about the next image from the previous one: there may be some still parts of
the image in the background, so some blocks may be identical to their contents in the previous frame.
Similarly, if the camera is panning or some object is moving, there may be blocks that are very similar to a
slightly shifted part of the previous frame.

VP9 takes advantage of these cases by using inter blocks. An inter block contains a motion vector that
specifies the offset in the previous frame of the part of the image to use as a prediction for this block. So, for
example, still blocks will be represented by a zero motion vector. The motion vector contains information
about both a vertical and horizontal offset to allow for both types of movement.

As for intra blocks, the decoding process works by first computing the prediction, and then inverse
transforming the transform coefficients and adding the result (the residual) to this prediction.

The motion vectors can specify shifts in units of whole pixels, or shifts containing a fractional pixel offset.
When a fractional pixel shift is used, the previous frame is filtered in order to give a more accurate prediction.

14 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

It is also possible to choose the type of interpolation filter used in this filtering. The main difference is in the
filter bandwidth. If the source frames are noisy, it can be appropriate to use a narrow bandwidth filter to
discard the noise, while if the source frames are clean we can use a higher bandwidth filter to try and preserve
more of the high frequency texture. This choice can either be made for all blocks in a frame, or specified per
block.

5.6 Superblocks

In some parts of the image there may be a large region that can all be predicted at the same time (e.g. a still
background image), while in other parts there may be some fine details that are changing (e.g. in a talking
head) and a smaller block size would be appropriate. VP9 provides the ability to vary the block size to handle
a range of prediction sizes.

The decoder decodes each image in units of 64 by 64 pixel superblocks. Each superblock has a partition
which specifies how it is to be encoded. It can consist of:

- Asingle 64 by 64 block

- Two 64 by 32 blocks

- Two 32 by 64 blocks

- Four 32 by 32 blocks

The individual parts are decoded in raster order.

Each 32 by 32 block can also be partitioned in a similar way all the way down until we reach an 8x8 block
which has the choices:

- Asingle 8 by 8 block

- Two 8 by 4 subblocks

- Two 4 by 8 subblocks

- Four 4 by 4 subblocks

An example partitioning of a 64 by 64 superblock is shown below:

64 pixels
0 5
0 3|4/ (38 15 16
(16x16) 5 7 (16x16) (16x16)
(8x8) | (8x8)
8 9 13
(8x8) | 10 (16x8) 17 18
I P I (16x16) (16x16)
(8x8) | (8x8) (16x8)
64 pixels
19
(32x16)
21
(32x32)
20
(32x16)

The numbers give the decode order of the blocks, while the numbers in brackets give the block sizes. The
blocks without sizes are subblocks of 8x8 blocks.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 15

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The difference between a block and a subblock is that a single block header (called mode info) is sent for all
the subblocks within an 8x8 region, while each block has its own block header. The subblocks can have
different intra modes, or motion vectors, but they share some other information such as which reference frame
to predict from.

5.7 Multiple transforms

VP9 specifies a number of different transforms that can be applied to the residual. These differ in size (4x4,
8x8, 16x16, 32x32 are supported) and in the type of transform. The type of transform can be varied
independently for rows and columns as being either an integer precision version of a Discrete Cosine
Transform or an Asymmetric Discrete Sine Transform. The choice of transform type is deduced from the
intra mode, while the choice of transform size can either be specified at a frame level, or given on a per-block
basis.

The idea is that when we are doing intra prediction, normally the samples near the known edges are predicted
better than the ones further away so the errors are usually small at one side. The Asymmetric Discrete Sine
Transform does a better job of transforming this shape because it has basis vectors that tend to vanish at the
known boundary, and maximize energy at the unknown boundary.

When the transform size is smaller than the block size, the transform blocks are predicted and reconstructed
in raster order. For example, suppose we had a 64x64 intra block using a 16x16 transform size. The blocks
would be processed in this order:

0 1 2 3
(16x16) (16x16) (16x16) (16x16)
4 5 6 7
(16x16) (16x16) (16x16) (16x16)
8 9 10 11
(16x16) (16x16) (16x16) (16x16)
12 13 14 15
(16x16) (16x16) (16x16) (16x16)

Each of these 16 blocks would in turn have the following apply:

1. The 16x16 block is predicted from previously decoded pixels.

2. The 16x16 block of transform coefficients is inverse transformed to compute the residual.
3. The prediction is added to the residual to compute the decoded pixels.

Note that the prediction for the second 16x16 block can depend on the decoded pixels from the first.
(However, also note that the loop filtering is only applied once the complete frame is decoded.)

5.8 Inverse DCT structure

The two-dimensional inverse transforms used for processing blocks of coefficients are executed by performing
one-dimensional inverse transforms on first the rows of the block followed by the columns of the intermediate
result from the row transforms.

The inverse DCT works by first shuffling the input data into bit-reversed address order followed by a series of
stages of butterfly operations. Each butterfly takes two input values, and produces two output values. The
butterfly can be considered as performing a 2D rotation of the input values.

16 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

There are two types of butterfly (represented by B and H). The H type of butterfly represents a matrix
combined with scaling such that it can be implemented with one addition and one subtraction operation
whereas the B type of butterfly requires the use of multiplication.

The structure of the 32 point inverse DCT is shown in the butterfly diagram below (not including the input
shuffle). The structure of the 2" point inverse DCT is such that it contains the 2™ point inverse DCT within it.
This recursion is highlighted in the diagram to also show the 4, 8, and 16 point inverse DCTs.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 17

18

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

0

2

w

=

w

fs2]

-

9

0

2

[&]

6

7

5

9

0

A A A4 A4 A4 444 4444444444 AA A A4 444444

IDCT4 IDCT8 IDCT16

B
—
H
—
B
_____________________________________ .
H
B B
H
-- o
H
H
H
B B B
H
H
H
.. H
H
H
H
H
H
H
" Y
B B B B
H
H
H
H
H
L
H
L
H

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

0

[7+3

~

w

~J

9

0

2

=

w

o

A A 444 A A4 4 4444 4444444444444 .4

«w

_|

o
(=]

o

VP9 Bitstream & Decoding Process Specification - v0.6

5.9 Inverse ADST structure

The ADST is an alternative 1D transform which may be used to transform arrays of length 4, 8, or 16.

31st March 2016

In some stages, the ADST uses an array S of higher precision intermediate results. The butterfly operation

SB stores its output in S, and the butterfly operation SH takes its input from S.

The structure of the 8 point inverse ADST used for VP9 is shown in the diagram below.

TO N SO TO N TO
T, T,
T2 T2
T,—% s T,
5 T
T5 o o TS
T, T
T~ | T
The structure of the 16 point inverse ADST is shown in the diagram below.
I S T I
T,— ° ° T,
1] [ﬁ@ T
1 SZ “ 1
T oW T :
el &9/) S - T,
T S BN T
T % e S\ T
s @Q) @d »@ e
I o o -
T e e 1K
T) 0| T
s,/ J
el (e & @@0‘9 T,
T11%_ @ Q‘(@‘ T11
T— S, @ T, S, T, T
12 @ @d — b@Q T, 12
T17_ @ @ T13
T % J Q T
T1;_ @ @ @ o T14

15 —

15

The 4 point ADST is treated as a special case and is implemented as eight multiplications followed by a

number of addition/subtraction/shift operations.

5.10 Reference frames

If an object is moving across a scene it can happen that the best source of an inter prediction for a block is not

the previous frame (where the block was obscured by the moving object), but the frame before that.

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

19

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

VP9 provides options for inter blocks to specify which frame is used as the reference frame. A decoder
maintains 8 slots, each slot with a decoded reference frame. When a new frame is decoded, the frame
header specifies which of the slots should be overwritten with the new frame.

Although 8 slots are maintained, any particular frame can make use of at most 3 reference frames. Which
reference frames to use are specified in the frame header, and then the detailed choice between these 3 is
specified in the mode info at the coding block level. Each block (of size above or equal to 8x8) is allowed to
use up to 2 reference frames. All the sub8x8 blocks inside an 8x8 block share the same reference frame
combination, which allows up to 2 reference frames.

5.11 Hidden frames

When a frame is decoded it will normally be shown. However, there is also an option to decode a frame but
not show it. The frame can still be saved into the reference frame slots for use in inter prediction of future
frames.

This option can be used to make a golden frame that contains a high quality version of various objects in the
scene. This frame can be used to construct other frames.

It is also possible to send a very short frame (just one or two bytes) that tells the decoder to directly show one
of the frame slots.

5.12 Compound prediction

As mentioned above, an inter block can be predicted using either a single reference frame or a combination of
two reference frames. The latter is called compound prediction in which 2 motion vectors and 2 reference
frames are specified for an inter block.

In this case the prediction is first formed from each reference frame, and then the final prediction is produced
as an averaged combination of these two. The hope is that the average is an even better predictor than either
of the originals.

The choice of compound prediction can either be made at the frame level, or specified in the mode info for
inter blocks.

5.13 Motion vector prediction

Quite often many blocks share the same motion vector (e.g. with a panning camera). VP9 takes advantage of
this by scanning already decoded inter blocks to form a prediction of the most likely motion vectors that will be
used for the current block. It prefers blocks that are nearby and share the same choice of reference frame, but
gradually expands its search scope until it has found up to 2 different predictions. When the spatial neighbors
do not provide sufficient information, it can fall back to using the motion vectors from the previous decoded
frame. The first found motion vector is called nearest motion vector, and the second found motion vector is
called near motion vector (nearmv).

The block contains the inter mode which indicates whether to use the nearest or near motion vector, or to use
a zero motion vector, or to use a new motion vector.

In the new motion vector case, what is coded in the bitstream is a motion vector difference. The decoder
reads this motion vector difference and adds it to the nearest motion vector to compute the actual motion
vector.

The effective motion vector can be specified at up to 1/8 (one eighth) pixel accuracy. When the predicted
motion vector has either component whose magnitude is above 64 (i.e., 8 full pixels), the maximum accuracy
of the effective motion vector is automatically capped at 1/4 (one quarter) pixel accuracy.

5.14 Tiles

The 64 by 64 superblocks in a frame are sent in raster order within rectangular tiles as detailed in section 5.6
and the tiles are sent in raster order within the frame. T diagram below shows a possible set of tiles within a
frame (numbered in raster scan order) including the individual 64 by 64 superblocks for tile 1 (labelled a-h).

20 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Tiles have dimensions that are multiples of 64 by 64 superblocks and are evenly spaced, as far as possible.

Tiles are not intended to help reduce bandwidth (in fact they can hurt compression a small amount), but the
objective is to allow implementations to take advantage of parallel processing by encoding/decoding different
tiles at the same time. The tile sizes are sent at the start of each tile (except the last) so a decoder can know
the start points if it wishes to do parallel decoding.

5.15 Segmentation map

VP9 provides a means of segmenting the image and then applying various signals or adjustments at the
segment level. Segmentation can be particularly efficient and useful when the segmentation of a video
sequence persists or changes little for many frames.

Up to 8 segments may be specified for any given frame. For each of these segments it is possible to specify:

a quantizer,

a loop filter strength,

a prediction reference frame,

a block skip mode that implies the use of a zero motion vector and that no residual will be coded.

Each of these data values for each segment may be individually updated at the frame level. Where a value is
not updated in a given frame, the value from the previous frame persists. The exceptions to this are key
frames, intra only frames or other frames where independence from past frame values is required (for
example to enable error resilience). In such cases all values are reset to a default.

It is possible to indicate segment affiliation for any prediction block of size 8x8 pixels or greater. Updates to
this segmentation map are explicitly coded using either a temporal coding or direct coding strategy (chosen
at the frame level).

If no explicit update is coded for a block’s segment affiliation, then it persists from frame to frame with the
same provisos detailed above for the segment data values. In regard to key frames, intra only frames and
frames where independence from past frames is required, the segment affiliation for each block defaults to 0
unless explicitly updated.

Internally, segment affiliation is stored at the resolution of 8x8 blocks (a segment map). This can lead to
conflicts when, for example, a transform size of 32x32 is selected for a 64x64 region. If the different
component 8x8 blocks that comprise a larger region have different segment affiliations, then the segment
affiliation for the larger region is defined as being the lowest segment id of any of the contributing 8x8 regions.

5.16 Reference frame scaling

It is legal for different decoded frames to have different frame sizes (and aspect ratios). VP9 automatically
handles resizing predictions from reference frames of different sizes.

However, reference frames must share the same color depth and subsampling format for reference frame
scaling to be allowed, and the amount of up/down scaling is limited to be no more than 16x larger and no less
than 2x smaller (e.g. the new frame must not be more than 16 times wider or higher than any of its used
reference frames).

5.17 Arithmetic coding

Suppose we have 4 symbols (for example, the inter mode can be NEW, NEAREST, NEAR, ZERO), that we
wish to encode. If these are all equally likely then encoding each with 2 bits would be fine:

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 21

VP9 Bitstream & Decoding Process Specification - v0.6

MODE BITS
NEW 00
NEAR 01
NEAREST 10
ZERO 11

MODE BITS
NEW 000
NEAR 001
NEAREST 01
ZERO 1

31st March 2016

However, suppose ZERO happened 50% of the time, NEAREST 25%, and NEAR/NEW 12.5%. In this case
we could use the variable length codes:

This scheme would now give fewer bits on average than the uniform encoding scheme.

Now suppose that ZERO happened 90% of the time. Arithmetic coding provides a way to allow us to
effectively use a fraction of a bit in this case.

At the lowest level VP9 contains a boolean decoder which decodes one boolean value (0 or 1) at a time
given an input containing the estimated probability of the value. If the boolean value is much more likely to be
a 1 than a 0 (or the other way around), then it can be faithfully coded using less than 1 bit per boolean value
on average using an arithmetic coder.

The boolean decoder works using a small set of unsigned 16-bit integers and an unsigned 16-bit multiplication
operation.

5.18 Probability updates

The boolean decoder produces fewest bits when the estimated probabilities for the different syntax elements
match the actual frequency with which the different cases occur.

VP9 provides two mechanisms to match these up:

1. The probabilities can be explicitly changed in the frame headers. (In fact the probability changes are
themselves coded using an arithmetic coder to reduce the cost of this process.)

2. The boolean decoder keeps track of how many times each type of syntax element is decoded and can be
told to automatically adjust the probabilities at the end of the frame to match the observed frequencies.

The idea with the first method is that we can reduce the number of bits to code the frame by setting the
probabilities accurately — but the cost is that we need to spend bits to perform the updates.

The idea with the second method is that the probabilities for the next frame are probably quite similar to the
ones for this frame, so adapting the probabilities at the end of the frame can help to improve compression.

5.19 Chroma format

The human visual system is said to be less sensitive to color than to luminance so images are often coded
with fewer chroma samples than luminance samples.

22 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

VP9 provides the option for the 2 chroma planes (called U and V) to be subsampled in either the horizontal or
vertical direction (or both, or neither).

In profiles 0 and 2, only 4:2:0 format is allowed, which means that chroma is subsampled in both the
horizontal and vertical direction. In profiles 1 and 3, all other subsampling formats are allowed.

5.20 High bit depth

VP9 supports the option to output pixels using either 8, 10, or 12 bits per color sample.
In profiles 0 and 1, only 8 bits per color sample is allowed.

In profiles 2 and 3, only greater than 8 bits per color sample is allowed.

5.21 Probability Contexts

When coding a syntax element, such as whether the block is skipped, VP9 defines a process to determine
which probability to use. The choice of probability is based on the context of the syntax element, e.g. on how
that syntax element has been decoded in the past for blocks that are similar in some way — such as being
close or being of the same size.

This process makes it more likely that the decoder can accurately predict the probability distribution of a
syntax element and therefore can represent the syntax element using fewer bits on average.

5.22 Zigzag ordering

The transform coefficients of natural blocks tend to be clustered around the low frequency end. This means
that there are often only a few non-zero coefficients in a block and these are clustered in one corner of the
transformed block.

VP9 decodes the coefficients in a special zig-zag order such that the first coefficient read is the DC coefficient,
and then the order gradually moves outward to higher frequency coefficients.

A bool is decoded after each non-zero coefficient that signals whether there are any more non-zero
coefficients in the whole transform block. When this condition is detected, the decoder can immediately fill in
the whole rest of the transform block with zeros without consuming any more bits from the bitstream.

Depending on the direction of intra prediction, the transform coefficients are often clustered towards the left or
the top side of the transform block. Therefore VP9 selects the scan order based on the intra prediction
direction.

An example scan ordering for a 4x4 block is illustrated in the diagram below, where the numbers and arrows
indicate the order of the decode process.

5 |»8

<O
WD

9 12

/

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 23

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

5.23 Loop filter

When we are using lossy compression the quantization means that errors are introduced into the decoded
data. For example, suppose we have some source data:

100 102 104 106 108 110 112 114

100 102 104 106 108 110 112 114

100 102 104 106 108 110 112 114

100 102 104 106 108 110 112 114

but due to lossy compression this decodes as two flat blocks:

103 103 103 103 111 111 111 111
103 103 103 103 111 111 111 111
103 103 103 103 111 111 111 111
103 103 103 103 111 111 111 111

Each of the individual 4x4 blocks looks reasonably close to the original, but the discontinuity in the middle
stands out. This is quite a common problem and block edges appear in the decoded images.

To reduce the impact of these errors, a process called the loop filter is applied to the block edges in the image.
This process filters the image pixels across the block boundaries in an attempt to smooth off such sudden
discontinuities. The block boundaries that are filtered include both the edges between transform blocks and
the edges between different mode info blocks.

This process is known as an in-loop filter because the filtered versions of frames are used for reference in
inter prediction.

5.24 Loop filter ordering and filters
The loop filter operates on a raster scan order of superblocks.

For each superblock, the loop filter is first applied to the left vertical boundary and all internal vertical
boundaries (shown in red in the diagram below).

The loop filter is then applied to the top horizontal boundary and all internal horizontal boundaries (shown in
blue).

24 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

=Ry

=iy

N[==

[\V)
=0

N
N

N

N

N

N
~J

N
©

The numbers indicate the order in which the boundaries are processed.

For each boundary, the filtering operations depends on up to 8 samples on either side of the edge, and may
modify up to 7 samples on either side of the edge. (This is true for both luma and chroma and in both
subsampled and non-subsampled modes of operation.) The regions outside the superblock which may be
used by the filter process are shaded grey in the diagram.

5.25 Frame structure

The coded bytes are stored in sequence as shown below:

Frame O

Uncompressed Compressed
Header Header

Tile 0 Tile 1

0 aMkg
| ®¥kg
z o¥kg

The first bytes contain the uncompressed header. This contains almost all the frame level information using
raw binary encodings (i.e. no arithmetic coding).

The compressed header follows the uncompressed header and specifies the transform size to use during the
frame plus information about which probabilities to adjust. The information in this second header is
compressed using arithmetic coding.

The headers are followed by the bytes for each tile in turn. Each tile contains the tile size (omitted for the final
tile) followed by the arithmetic coded data for the tile.

This structure is used for normal frames. There are also short frames that simply contain 1 byte of
uncompressed header (or 2 for profile 3) that indicate that the decoder should show a previously decoded
frame. These short frames have no compressed header and no tile data.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 25

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

5.26 Superframes

VP9 supports consolidating multiple compressed video frames into one single chunk called a superframe.
The superframe index is stored in the last bytes of the chunk (and is up to 34 bytes long). The enclosed
frames can be located by parsing this superframe index:

Frame O Frame 1 Frame 2 ‘ Superframe Index

0 kg
| alkg
Z kg

a1Aq 1sE7

From the point of view of the container format, this whole superframe is stored together. This format can be
useful to ensure that each superframe produces a single decoded frame even though the video is coded using
unshown frames. However, it is also legal for a superframe to result in multiple output frames, or even no

output frames.

26 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6 Bitstream syntax

This section presents the bitstream syntax in a tabular form. The meaning of each of the syntax elements is
presented in section 7.

6.1 Frame syntax

frame(sz) { Type
startBitPos = get_position()
uncompressed_header()
trailing_bits()
if (header_size_in_bytes ==0) {
while (get_position() < startBitPos + 8 * sz)
padding_bit (1)
return
}
load_probs(frame_context_idx)
load_probs2(frame_context_idx)
clear_counts()
init_bool(header_size_in_bytes)
compressed_header()
exit_bool()
endBitPos = get_position()
headerBytes = (endBitPos - startBitPos) / 8
decode_tiles(sz - headerBytes)
refresh_probs()

6.1.1 Trailing bits syntax

trailing_bits() { Type
while (get_position() & 7))
zero_bit f(1)
}

6.1.2 Refresh probs syntax

refresh_probs() { Type
if (error_resilient_mode == 0 && frame_parallel_decoding_mode == 0) {
load_probs(frame_context_idx)
adapt_coef _probs()
if (Framelsintra ==0) {
load_probs2(frame_context_idx)
adapt_noncoef_probs()

}

if (refresh_frame_context)
save_probs(frame_context_idx)

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 27

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

)

6.2 Uncompressed header syntax

uncompressed_header() { Type

frame_marker f(2)
profile_low_bit (1)
profile_high_bit (1)
Profile = (profile_high_bit << 1) + profile_low_bit
if (Profile == 3)

reserved_zero (1)
show_existing_frame f(1)
if (show_existing_frame == 1) {

frame_to_show_map_idx f(3)

header_size_in_bytes =0
refresh_frame_flags =0
loop_filter_level =0

return
}
LastFrameType = frame_type
frame_type f(1)
show_frame f(1)
error_resilient_mode f(1)

if (frame_type == KEY_FRAME) {
frame_sync_code()
color_config()
frame_size()
render_size()
refresh_frame_flags = OxFF
Framelsintra = 1
}else {
if (show_frame ==0) {
intra_only f(1)
}else {
intra_only =0

}

Framelsintra = intra_only

if (error_resilient_mode ==0) {
reset_frame_context f(2)

}else {
reset_frame_context =0

}
if (intra_only ==1){
frame_sync_code()
if (Profile > 0) {
color_config()

28 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

}else {

color_space = CS_BT_601

subsampling_x =1

subsampling_y = 1

BitDepth = 8

}

refresh_frame_flags

frame_size()

render_size()

}else {

refresh_frame_flags

for(i=0;i<3;i+t+){

ref_frame_idx[i]

ref_frame_sign_bias[LAST_FRAME +i]

}

frame_size_with_refs()

allow_high_precision_mv

read_interpolation_filter()

}

}

if (error_resilient_mode ==0) {

refresh_frame_context

f(1)

frame_parallel_decoding_mode

}else {

refresh_frame_context =0

frame_parallel_decoding_mode = 1

}

frame_context_idx

if (Framelsintra || error_resilient_mode) {

setup_past_independence ()

if (frame_type == KEY_FRAME || error_resilient_mode ==
|| reset_frame_context ==

) {

for(i=0;i<4;i++){

save_probs(i)

}

} else if (reset_frame_context == 2) {

save_probs(frame_context_idx)

}

frame_context_idx =0

}

loop_filter_params()

quantization_params()

segmentation_params()

tile_info()

header_size_in_bytes

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

29

6.2.1

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

)

Frame sync syntax

frame_sync_code() {

Type

frame_sync_byte 0

f(8)

frame_sync_byte_1

f(8)

frame_sync_byte 2

f(8)

6.2.2 Color config syntax

color_config() {

if (Profile >=2) {

ten_or_twelve_bit

BitDepth = ten_or_twelve_bit? 12 : 10

}else {

BitDepth = 8

}

color_space

if (color_space 1= CS_RGB) {

color_range

if (Profile == 1 || Profile == 3) {

subsampling_x

subsampling_y

reserved_zero

}else {

subsampling_x =1

subsampling_y = 1

}

}else {

color_range =1

if (Profile == 1 || Profile == 3) {

subsampling_x =0

subsampling_y =0

reserved_zero

6.2.3 Frame size syntax

30

frame_size() {

Type

frame_width_minus_1

f(16)

frame_height_minus_1

f(16)

FrameWidth = frame_width_minus_1 + 1

FrameHeight = frame_height_minus_1 + 1

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

compute_image_size()

6.2.4 Render size syntax

render_size() { Type
render_and_frame_size_different f(1)
if (render_and_frame_size_different == 1) {
render_width_minus_1 f(16)
render_height_minus_1 f(16)

renderWidth = render_width_minus_1 + 1

renderHeight = render_height_minus_1 + 1

}else {

renderWidth = FrameWidth

renderHeight = FrameHeight

6.2.5 Frame size with refs syntax

frame_size_with_refs() { Type
for (i=0;i<3;i++){
found_ref f(1)

if (found_ref ==1){

FrameWidth = RefFrameWidth[ref_frame_idx[i]]

FrameHeight = RefFrameHeight[ref_frame_idx[i]]

break

}

if (found_ref==0)

frame_size()

else

compute_image_size()

render_size()

6.2.6 Compute image size syntax

compute_image_size() { Type

MiCols = (FrameWidth + 7) >> 3

MiRows = (FrameHeight + 7) >> 3

Sb64Cols = (MiCols + 7) >> 3

Sb64Rows = (MiRows + 7) >> 3

6.2.7 Interpolation filter syntax

‘ read_interpolation_filter() { Type

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

The constant lookup table literal_to_type is defined as:

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

is_filter_switchable

if (is_filter_switchable == 1) {

interpolation_filter = SWITCHABLE

}else {

raw_interpolation_filter

interpolation_filter = literal_to_type[raw_interpolation_filter]

literal_to_type[4] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }

6.2.8 Loop filter params syntax

loop_filter_params() {

Type

loop_filter_level

f(6)

loop_filter_sharpness

f(3)

loop_filter_delta_enabled

f(1)

if (loop_filter_delta_enabled == 1) {

loop_filter_delta_update

if (loop_filter_delta_update == 1) {

for (i=0;i<4;i++){

update_ref_delta

if (update_ref delta==1)

loop_filter_ref_deltas[i]

}

for(i=0;i<2;i++){

update_mode_delta

if (update_mode_delta==1)

loop_filter_mode_deltas] i]

6.2.9 Quantization params syntax

32

quantization_params() {

Type

base_q_idx

f(8)

delta_qg_y_dc =read_delta_q()

delta_qg_uv_dc =read_delta_q()

delta_qg_uv_ac =read_delta_q()

Lossless = base_q_idx == 0 && delta_q_y dc ==
&& delta_q_uv_dc == 0 && delta_q_uv_ac ==

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.2.10 Delta quantizer syntax

read_delta_q() {

Type

delta_coded

f(1)

if (delta_coded) {

delta_q

s(4)

}else {

delta_gq=0

}

return delta_q

6.2.11 Segmentation params syntax

segmentation_params() {

Type

segmentation_enabled

f(1)

if (segmentation_enabled == 1) {

segmentation_update_map

f(1)

if (segmentation_update_map == 1) {

for(i=0;i<7;i++)

segmentation_tree_probs[i] = read_prob()

segmentation_temporal_update

f(1)

for(i=0;i<3;i++)

segmentation_pred_prob[i] = segmentation_temporal_update ?
read_prob() : 255

}

segmentation_update_data

f(1)

if (segmentation_update_data == 1) {

segmentation_abs_or_delta_update

f(1)

for (i = 0; i< MAX_SEGMENTS; i++) {

for (j = 0;] < SEG_LVL_MAX; j++) {

feature_value = 0

feature_enabled

f(1)

FeatureEnabled[i][j] = feature_enabled

if (feature_enabled == 1) {

bits_to_read = segmentation_feature_bits][j]

feature_value

f(bits_to_read)

if (segmentation_feature_signed[j]==1) {

feature_sign

f(1)

if (feature_sign==1)

feature_value *= -1

}

FeatureData[i][j] = feature_value

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

33

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

The constant lookup tables used in this syntax are defined as:

segmentation_feature_bits| SEG_LVL_MAX]1={8,6,2,0}

segmentation_feature_signed[SEG_LVL_MAX]1={1,1,0,0}

6.2.12 Probability syntax

6.2.

read_prob() { Type
prob_coded f(1)
if (prob_coded) {
prob f(8)
}else {
prob = 255
}
return prob
13 Tile info syntax
tile_info() { Type
minLog2TileCols = calc_min_log2_tile_cols()
maxLog2TileCols = calc_max_log2_tile_cols()
tile_cols_log2 = minLog2TileCols
while (tile_cols_log2 < maxLog2TileCols) {
increment_tile_cols_log2 f(1)
if (increment_tile_cols_log2 == 1)
tile_cols_log2++
else
break
}
tile_rows_log2 f(1)
if (tile_rows_log2 ==1) {
increment_tile_rows_log2 f(1)
tile_rows_log2 += increment_tile_rows_log2
}
6.2.14 Tile size calculation
calc_min_log2_tile_cols() { Type

34

minLog2 =0

while ((MAX_TILE_WIDTH_B64 << minLog2) < Sb64Cols)

minLog2++

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

return minLog2

calc_max_log2_tile_cols() {

Type

maxLog2 = 1

while ((Sb64Cols >> maxLog2) >= MIN_TILE_WIDTH_B64)

maxLog2++

return maxLog2 - 1

6.3 Compressed header syntax

compressed_header() {

Type

read_tx_mode()

if (tx_mode == TX_MODE_SELECT){

tx_mode_probs()

}

read_coef_probs()

read_skip_prob()

if (Framelsintra==0) {

read_inter_mode_probs()

if (interpolation_filter == SWITCHABLE)

read_interp_filter_probs()

read_is_inter_probs()

frame_reference_mode()

frame_reference_mode_probs()

read_y _mode_probs()

read_partition_probs()

mv_probs()

6.3.1 Tx mode syntax

read_tx_mode() {

Type

if (Lossless ==1){

tx_mode = ONLY_4X4

}else {

tx_mode

if (tx_mode == ALLOW_32X32) {

tx_mode_select

tx_mode += tx_mode_select

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

35

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.3.2 Tx mode probs syntax

tx_mode_probs() { Type
for (i=0;i<TX_SIZE_CONTEXTS; i++)
for (j=0;j<TX_SIZES - 3; j++)
tx_probs_8x8[i][j] = diff_update_prob(tx_probs_8x8[i][j])
for (i=0;i<TX_SIZE_CONTEXTS; i++)
for (j=0;j<TX_SIZES - 2; j++)
tx_probs_16x16[i][j] = diff_update_prob(tx_probs_16x16[i][j])
for (i=0;i<TX_SIZE_CONTEXTS; i++)
for(j=0;j<TX_SIZES - 1; j++)
tx_probs_32x32[i][j] = diff_update_prob(tx_probs_32x32[i][j])

6.3.3 Diff update prob syntax

diff_update_prob(prob) { Type
update_prob B(252)
if (update_prob ==1){
deltaProb = decode_term_subexp()
prob = inv_remap_prob(deltaProb, prob)
}

return prob

6.3.4 Decode term subexp syntax

decode_term_subexp() { Type
bit L(1)
if (bit==0){
sub_exp_val L(4)
return sub_exp_val
}
bit L(1)
if (bit==0){
sub_exp_val_minus_16 L(4)
return sub_exp_val_minus_16 + 16
}
bit L(1)
if (bit==0){
sub_exp_val_minus_32 L(5)
return sub_exp_val_minus_32 + 32
}
v L(7)
if (v<65)
return v + 64
bit L(1)

36 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

return (v << 1) -1 + bit

}
6.3.5 Invremap prob syntax
inv_remap_prob(deltaProb, prob) { Type
m = prob
v = deltaProb
v =inv_map_table[v]
m--
if ((m<<1)<=255)
m =1 + inv_recenter_nonneg(v, m)
else
m = 255 - inv_recenter_nonneg(v, 255-1-m)
return m
}
inv_map_table is defined as:
inv_map_table] MAX_PROB] = {
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189,
202, 215, 228, 241,254, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174,175,177,178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238,
239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 253
}
6.3.6 Inv recenter noneg syntax
inv_recenter_nonneg(v, m) { Type
if(v>2*m)
return v
if(v&1)

returnm - ((v + 1) >> 1)

return m + (v >> 1)

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

)

6.3.7 Coef probs syntax

read_coef_probs() { Type
maxTxSize = tx_mode_to_biggest_tx_size[tx_mode]
for (txSz = TX_4X4; txSz <= maxTxSize; txSz++) {
update_probs L(1)
if (update_probs == 1)
for(i=0;i<2;i++)
for (j=0;j<2;j++)
for (k=0; k <6; k++) {
maxL =(k==0)?3:6
for (1=0; 1 <maxL; I++)
for(m=0; m<3; m++)
coef probs[txSz J[i1[jI kI I][m]=
diff_update_prob(coef_probs[txSz J[i][jI[k][I1]Im])

6.3.8 Skip probs syntax

read_skip_prob() { Type
for (i=0;i< SKIP_CONTEXTS; i++)
skip_prob[i] = diff_update_prob(skip_prob[i])

6.3.9 Inter mode probs syntax

read_inter_mode_probs() { Type
for (i=0;i<INTER_MODE_CONTEXTS; i++)
for (j=0;j<INTER_MODES - 1; j++)
inter_mode_probs[i][j] = diff_update_prob(inter_mode_probs[i][j])

6.3.10 Interp filter probs syntax

read_interp_filter_probs() { Type
for (j=0;j < INTERP_FILTER_CONTEXTS; j++)
for (i=0;i<SWITCHABLE_FILTERS - 1; i++)

interp_filter_probs[j][i] = diff_update_prob(interp_filter_probs[j][i])

6.3.11 Intra inter probs syntax

read_is_inter_probs() { Type
for (i=0;i<IS_INTER_CONTEXTS; i++)

38 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

is_inter_prob[i] = diff_update_prob(is_inter_prob[i])

6.3.12 Frame reference mode syntax

frame_reference_mode() { Type
compoundReferenceAllowed = 0
for (i=1;i<REFS_PER_FRAME; i++)
if (ref_frame_sign_bias[i+ 1] !=ref_frame_sign_bias[1])
compoundReferenceAllowed = 1
if (compoundReferenceAllowed == 1) {
non_single_reference L(1)
if (non_single_reference == 0) {
reference_mode = SINGLE_REFERENCE
}else {
reference_select L(1)
if (reference_select ==0)
reference_mode = COMPOUND_REFERENCE
else
reference_mode = REFERENCE_MODE_SELECT
setup_compound_reference_mode()
}
}else {
reference_mode = SINGLE_REFERENCE
}
}
6.3.13 Frame reference mode probs syntax
frame_reference_mode_probs() { Type

if (reference_mode == REFERENCE_MODE_SELECT) {

for (i=0;i < COMP_MODE_CONTEXTS; i++)

comp_mode_prob[i] = diff_update_prob(comp_mode_prob[i])

}

if (reference_mode != COMPOUND_REFERENCE) {

for (i=0;i < REF_CONTEXTS; i++){

single_ref _prob[i][0] = diff _update_prob(single_ref prob[i][0])

single_ref prob[i][1] = diff _update_prob(single_ref prob[i][1])

}

}

if (reference_mode != SINGLE_REFERENCE) {

for (i=0;i < REF_CONTEXTS; i++)

comp_ref _prob[i] = diff_update_prob(comp_ref prob[i])

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

39

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.3.14 Y mode probs syntax

read_y _mode_probs() { Type
for (i=0;i<BLOCK_SIZE_GROUPS; i++)
for (j=0;j<INTRA_MODES - 1; j++)
y_mode_probs[i][j] = diff_ update_prob(y_mode_probs[i][j])

6.3.15 Partition probs syntax

read_partition_probs() { Type
for (i=0;i<PARTITION_CONTEXTS; i++)
for (j=0;j<PARTITION_TYPES - 1; j++)

partition_probs[i][j] = diff_update_prob(partition_probs[i][j])

6.3.16 MV probs syntax

mv_probs() { Type
for(j=0;j<MV_JOINTS - 1; j++)
mv_joint_probs[j] = update_mv_prob(mv_joint_probs[j])
for (i=0;i<2;i++){
mv_sign_prob[i] = update_mv_prob(mv_sign_prob[i])
for (j=0;j<MV_CLASSES - 1; j++)
mv_class_probs[i][j] = update_mv_prob(mv_class_probs[i][j])
mv_class0_bit_prob[i]= update_mv_prob(mv_class0_bit_prob[i])
for (j=0;j<MV_OFFSET_BITS; j++)
mv_bits_prob[i][j] = update_mv_prob(mv_bits_prob[i][j])

}
for(i=0;i<2;i++){
for (j=0;j < CLASSO_SIZE; j++)
for (k=0; k< MV_FR_SIZE - 1; k++)
mv_class0_fr_probsli][jl[k] = update_mv_prob(mv_classO_fr_probs]il[jl[k])
for (k=0; k< MV_FR_SIZE - 1; k++)
mv_fr_probs[i][k] = update_mv_prob(mv_fr_probs[i][k])

}
if (allow_high_precision_mv) {
for(i=0;i<2;i++){
mv_class0_hp_prob[i] = update_mv_prob(mv_class0_hp_prob[i])
mv_hp_prob[i] = update_mv_prob(mv_hp_prob[i])

}
}
}
6.3.17 Update mv prob syntax
update_mv_prob(prob) { Type
update_mv_prob B(252)

40 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (update_mv_prob ==1){
mv_prob L(7)
prob = (mv_prob << 1) | 1
}

return prob

6.3.18 Setup compound reference mode syntax

setup_compound_reference_mode() { Type
if (ref_frame_sign_bias[LAST_FRAME] ==
ref_frame_sign_bias[GOLDEN_FRAME]) {
CompFixedRef = ALTREF_FRAME
CompVarRef[0] = LAST_FRAME
CompVarRef[1] = GOLDEN_FRAME
} else if (ref_frame_sign_bias[LAST_FRAME] ==
ref frame_sign_bias[ALTREF_FRAME]) {
CompFixedRef = GOLDEN_FRAME
CompVarRef[0] = LAST_FRAME
CompVarRef[1] = ALTREF_FRAME
}else {
CompFixedRef = LAST_FRAME
CompVarRef[0] = GOLDEN_FRAME
CompVarRef[1] = ALTREF_FRAME

6.4 Decode tiles syntax

decode_tiles(sz) { Type
tileCols = 1 << tile_cols_log2
tileRows = 1 << tile_rows_log2
clear_above_context()
for (tileRow = 0; tileRow < tileRows; tileRow++) {
for (tileCol = 0; tileCol < tileCols; tileCol++) {
lastTile = (tileRow == tileRows - 1) && (tileCol == tileCols - 1)
if (lastTile) {
tile_size = sz
}else {
tile_size f(32)
sz -= tile_size + 4

}

MiRowStart = get_tile_offset(tileRow, MiRows, tile_rows_log2)
MiRowENd = get_tile_offset(tleRow + 1, MiRows, tile_rows_log2)
MiColStart = get_tile_offset(tileCol, MiCols, tile_cols_log2)
MiColEnd = get_tile_offset(tileCol + 1, MiCols, tile_cols_log2)

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

init_bool(tile_size)

decode _tile()

exit_bool()

6.4.1 Get tile offset syntax

get_tile_offset(tileNum, mis, tileSzLog2) {

Type

sbs = (mis +7) >> 3

offset = ((tileNum * sbs) >> tileSzLog2) << 3

return Min(offset, mis)

6.4.2 Decode tile syntax

decode_tile() {

Type

for (r = MiRowStart; r < MiRowEnd; r += 8) {

clear_left_context()

for (¢ = MiColStart; c < MiColEnd; c += 8)

decode_partition(r, c, BLOCK_64X64)

6.4.3 Decode partition syntax

42

decode_partition(r, c, bsize) {

Type

if (r>= MiRows || ¢ >= MiCols)

return 0

num8x8 = num_8x8_blocks_wide_lookup[bsize]

halfBlock8x8 = num8x8 >> 1

hasRows = (r + halfBlock8x8) < MiRows

hasCols = (¢ + halfBlock8x8) < MiCols

partition

subsize = subsize_lookup|[partition][bsize]

if (subsize < BLOCK_8X8 || partition == PARTITION_NONE) {

decode_block(r, c, subsize)

} else if (partition == PARTITION_HORZ) {

decode_block(r, c, subsize)

if (hasRows)

decode_block(r + halfBlock8x8, c, subsize)

} else if (partition == PARTITION_VERT) {

decode_block(r, c, subsize)

if (hasCols)

decode_block(r, ¢ + halfBlock8x8, subsize)

}else {

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

decode_partition(r, c, subsize)
decode_partition(r, ¢ + halfBlock8x8, subsize)
decode_partition(r + halfBlock8x8, c, subsize)
decode_partition(r + halfBlock8x8, ¢ + halfBlock8x8, subsize)
}
if (bsize == BLOCK_8X8 || partition = PARTITION_SPLIT) {
for (i=0;i<num8x8;i++){

AbovePartitionContext[¢ +i]= 15 >>b_width_log2_lookup[subsize]

LeftPartitionContext[r +i] =15 >> b_height_log2_lookup[subsize]

6.4.4 Decode block syntax

decode_block(r, c, subsize) { Type

MiRow =r

MiCol = c

MiSize = subsize

AvailU=r>0

AvailL = ¢ > MiColStart

mode_info()

EobTotal =0

residual()

if (is_inter && subsize >= BLOCK_8X8 && EobTotal ==0) {

skip = 1

}

for (y = 0; y < num_8x8_blocks_high_lookup[subsize]; y++)

for (x = 0; x < num_8x8_blocks_wide_lookupl[subsize]; x++) {

Skips[r+y][c+ x]=skip

TxSizes[r+y][c+ x]=tx_size

MiSizes[r + y][¢ + x] = MiSize

YModes [r+y][c+x]=y_mode

Segmentlds[r +y][c + x] = segment_id

for(refList = O; refList < 2; refList++)

RefFrames[r + y][¢ + x][refList] = ref_frame[refList]

if (is_inter) {

InterpFilters[r + y][¢ + x] = interp_filter

for(refList = 0; refList < 2; refList++) {

Mvs[r+y][c + x][refList] = BlockMvsJ refList][3]

for(b = 0; b < 4; b++)

SubMvs[r+y][c+ x][refList][b] = BlockMvs[refList][b]

}

}else {

for(b=0; b < 4; b++)

SubModes[r+y][c+x][b]=sub_modes[b]

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.4.5 Mode info syntax

mode_info() { Type
if (Framelsintra)
intra_frame_mode_info()
else
inter_frame_mode_info()

6.4.6 Intra frame mode info syntax

intra_frame_mode_info() { Type
intra_segment_id()
read_skip()

read_tx_size(1)
ref frame[0] = INTRA_FRAME
ref_frame[1] = NONE
is_inter=0
if (MiSize >= BLOCK_8X8) {
default_intra_mode T
y_mode = default_intra_mode
for(b=0;b <4;b++)
sub_modes[b]=y_mode
}else {
num4x4w = num_4x4_blocks_wide_lookup[MiSize]
num4x4h = num_4x4_blocks_high_lookup[MiSize]
for (idy = 0; idy < 2; idy += num4x4h) {
for (idx = 0; idx < 2; idx += num4x4w) {
default_intra_mode T
for (y2=0;y2 < numdxdh ; y2++)
for(x2 =0 ; x2 < numé4x4w ; x2++)
sub_modes] (idy + y2) * 2 + idx + x2] = default_intra_mode

}
}
y_mode = default_intra_mode
}
default_uv_mode T

uv_mode = default_uv_mode

6.4.7 Intra segment id syntax

‘ intra_segment_id() { Type

44 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (segmentation_enabled && segmentation_update_map)

segment_id

Else

segment_id =0

6.4.8 Skip syntax

read_skip() {

Type

if (seg_feature_active(SEG_LVL_SKIP)){

skip = 1

}else {

Skip

6.4.9 Segmentation feature active syntax

seg_feature_active(feature) {

Type

return segmentation_enabled && FeatureEnabled[segment_id][feature]

6.4.10 Tx size syntax

read_tx_size(allowSelect) {

Type

maxTxSize = max_txsize_lookup[MiSize]

if (allowSelect && tx_mode == TX_MODE_SELECT && MiSize >= BLOCK_8X8)

tx_size

else

tx_size = Min(maxTxSize, tx_mode_to_biggest_tx_size[tx_mode])

The max_txsize_lookup table is defined as:

max_txsize_lookup[BLOCK_SIZES] = {

TX_4X4, TX_4X4, TX_4X4,

TX_8X8, TX_8X8, TX 8X8,

TX_16X16, TX_16X16, TX_16X16,

TX_32X32, TX_32X32, TX_32X32, TX_32X32,

}

6.4.11 Inter frame mode info syntax

inter_frame_mode_info() {

Type

LeftRefFrame[0] = AvailL ? RefFrames[MiRow][MiCol-1][0]: INTRA_FRAME

AboveRefFrame[0] = AvailU ? RefFrames[MiRow-1][MiCol][0] : INTRA_FRAME

LeftRefFrame[1] = AvailL ? RefFrames[MiRow][MiCol-1][1]: NONE

AboveRefFrame[1] = AvailU ? RefFrames[MiRow-1][MiCol][1]1: NONE

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

45

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Leftintra = LeftRefFrame[0] <= INTRA_FRAME
Abovelntra = AboveRefFrame[0] <= INTRA_FRAME
LeftSingle = LeftRefFrame[1] <= NONE
AboveSingle = AboveRefFrame[1] <= NONE
inter_segment_id()

read_skip()

read_is_inter()

read_tx_size(!skip || lis_inter)

if (is_inter)
inter_block_mode_info()
else

intra_block_mode_info()

6.4.12 Inter segment id syntax

inter_segment_id() { Type
if (segmentation_enabled) {
predictedSegmentld = get_segment_id()
if (segmentation_update_map) {
if (segmentation_temporal_update) {
seg_id_predicted T
if (seg_id_predicted)
segment_id = predictedSegmentld
else

segment_id T
for (i=0;i<num_8x8_blocks_wide_lookup[MiSize]; i++)

AboveSegPredContext[MiCol +i] = seg_id_predicted
for (i=0;i<num_8x8_blocks_high_lookup[MiSize]; i++)

LeftSegPredContext] MiRow + i] = seg_id_predicted

}else {
segment_id T
}
}else {
segment_id = predictedSegmentld
}
}else {
segment_id =0
}
}
6.4.13 Is inter syntax
read_is_inter() { Type
if (seg_feature_active (SEG_LVL_REF_FRAME))
is_inter = FeatureData] segment id][SEG_LVL REF_FRAME] I=
INTRA_FRAME

46 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

else
is_inter T

6.4.14 Get segment id syntax

The predicted segment id is the smallest value found in the on-screen region of the segmentation map
covered by the current block.

get_segment_id() { Type
bw = num_8x8_blocks_wide_lookup[MiSize]
bh = num_8x8_blocks_high_lookup[MiSize]
xmis = Min(MiCols - MiCol, bw)
ymis = Min(MiRows - MiRow, bh)
seg=7
for (y = 0; y <ymis; y++)
for (x = 0; x < xmis; x++)
seg = Min(seg, PrevSegmentlds[MiRow + y][MiCol + x])
return seg

6.4.15 Intra block mode info syntax

intra_block_mode_info() { Type
ref_frame[0] = INTRA_FRAME
ref_frame[1] = NONE
if (MiSize >= BLOCK_8X8) {
intra_mode T
y_mode = intra_mode
for(b=0;b <4;b++)
sub_modes[b]=y_mode
}else {
num4x4w = num_4x4_blocks_wide_lookup[MiSize]
num4x4h = num_4x4_blocks_high_lookup[MiSize]
for (idy = 0; idy < 2; idy += num4x4h) {
for (idx = 0; idx < 2; idx += num4x4w) {
sub_intra_mode T
for (y2 = 0; y2 < numéx4h; y2++)
for(x2 = 0; x2 < num4x4w; x2++)
sub_modes] (idy + y2) * 2 + idx + x2] = sub_intra_mode

}

y_mode = sub_intra_mode

}

uv_mode T

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 47

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.4.16 Inter block mode info syntax

inter_block_mode_info() { Type
read_ref_frames()
for(j=0;j<2;j++){
if (ref_frame[j] > INTRA_FRAME) {
find_mv_refs(ref_frame[j],-1)
find_best_ref mvs(j)

}

}
isCompound = ref_frame[1] > INTRA_FRAME

if (seg_feature_active(SEG_LVL_SKIP)){
y_mode = ZEROMV
} else if (MiSize >= BLOCK_8X8) {

inter_mode T
y_mode = NEARESTMV + inter_mode
}
if (interpolation_filter == SWITCHABLE)
interp_filter T
else

interp_filter = interpolation_filter
if (MiSize < BLOCK_8X8) {
num4x4w = num_4x4_blocks_wide_lookup[MiSize]
num4x4h = num_4x4_blocks_high_lookup[MiSize]
for (idy = 0; idy < 2; idy += num4x4h) {
for (idx = 0; idx < 2; idx += num4x4w) {
inter_mode T
y_mode = NEARESTMV + inter_mode
if (y_mode == NEARESTMV || y_mode == NEARMV)
for(j=0;j<1+isCompound; j++)
append_sub8x8_mvs(idy * 2 +idx, j)
assign_mv(isCompound)
for (y2 = 0; y2 < numéx4h; y2++) {
for(x2 = 0; x2 < numé4x4w; x2++) {
block = (idy + y2) * 2 + idx + x2
for(refList = O; refList < 1 + isCompound; refList++)
BlockMuvsJ refList][block] = Mv[refList]

}

}else {
assign_mv(isCompound)
for(refList = O; refList < 1 + isCompound; refList++)
for(block = 0; block < 4; block++)
BlockMuvs| refList][block] = Mv[refList]

48 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.4.17 Ref frames syntax

read_ref frames() {

Type

if (seg_feature_active(SEG_LVL_REF_FRAME)) {

ref_frame[0] = FeatureData[segment_id][SEG_LVL REF_FRAME]

ref_frame[1]= NONE

}else {

if (reference_mode == REFERENCE_MODE_SELECT)

comp_mode

else

comp_mode = reference_mode

if (comp_mode == COMPOUND_REFERENCE) {

idx = ref_frame_sign_bias[CompFixedRef]

comp_ref

ref_frame[idx] = CompFixedRef

ref_frame[lidx] = CompVarRef[comp_ref]

}else {

single_ref_p1

if (single_ref_p1){

single_ref_p2

ref_frame[0] = single_ref p2 ? ALTREF_FRAME : GOLDEN_FRAME

}else {

ref frame[0]=LAST_FRAME

}

ref_frame[1]= NONE

6.4.18 Assign MV syntax

assign_mv(isCompound) {

Type

Mv[1] = ZeroMv

for (i=0;i<1+isCompound; i++) {

if (y_mode == NEWMV)

read_mv(i)
else if (y_mode == NEARESTMV)
Mv[i]= NearestMv[i]

else if (y_mode == NEARMV)

MV[i]=NearMv[i]

else

Mv[i]=ZeroMv

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

49

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

)

6.4.19 MV syntax

read_mv(ref) { Type

UseHp = allow_high_precision_mv && use_mv_hp(BestMv][ref])

diffMv = ZeroMv

mv_joint T

if (mv_joint == MV_JOINT_HZVNZ || mv_joint == MV_JOINT_HNZVNZ)
diffMv[O] = read_mv_component(0)

if (mv_joint == MV_JOINT_HNZVZ || mv_joint == MV_JOINT_HNZVNZ)
diffMv[1] = read_mv_component(1)

Mv[ref][0] = BestMv[ref][0] + diffMv[0]

Mv[ref][1]=BestMv[ref][1]+ diffMv[1]

}
6.4.20 MV component syntax
read_mv_component(comp) { Type
mv_sign T
mv_class T
if (mv_class == MV_CLASS 0){
mv_class0_bit T
mv_class0_fr T
mv_class0_hp T
mag = ((mv_class0_bit << 3)| (mv_class0O_fr<<1)| mv_classO_hp)+ 1
}else {
d=0
for (i=0;i<mv_class;i++){
mv_bit T
d |= mv_bit <<i
}
mag = CLASSO_SIZE << (mv_class + 2)
mv_fr T
mv_hp T
mag+=((d<<3)|(mv_fr<<1)|mv_hp)+1
}
return mv_sign ? -mag : mag
}
6.4.21 Residual syntax
residual() { Type

bsize = MiSize < BLOCK_8X8 ? BLOCK_8X8 : MiSize

for (plane = 0; plane < 3; plane++) {

txSz = (plane > 0) ? get_uv_tx_size() : tx_size

step =1 << xSz

50 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

planeSz = get_plane_block_size(bsize, plane)

num4x4w = num_4x4_blocks_wide_lookup[planeSz]

num4x4h = num_4x4_blocks_high_lookup[planeSz]

subX = (plane > 0) ? subsampling_x: 0

subY = (plane > 0) ? subsampling_y : 0

baseX = ((MiCol * 8) >> subX)

baseY = ((MiRow * 8) >> subY)

if (is_inter) {

if (MiSize < BLOCK_8X8) {

for(y = 0; y < numéx4h; y++)

for(x = 0; X < numé4x4w; x++)

predict_inter(plane, baseX + 4 * x, baseY +4 *y, 4,4,y * numdxdw + X)

}else {

predict_inter(plane, baseX, baseY, num4x4w * 4, num4x4h * 4,0)

}

maxx = (MiCols * 8) >> subX

maxy = (MiRows * 8) >> subY

blockldx =0

for(y = 0; y < numéx4h;y +=step) {

for(x = 0; x < num4x4w; x += step) {

startX = baseX + 4 * x

startY =baseY +4 *y

nonzero =0

if (startX < maxx && startY < maxy) {

if (lis_inter)

predict_intra(plane, startX, startY,

AvailL || x > 0, AvailU || y > 0, x + step < num4x4w,

txSz, blockldx)

if (!skip) {

nonzero = tokens(plane, startX, startY, txSz, blockldx)

reconstruct(plane, startX, startY, txSz)

}

for (i=0;i<step;i++){

AboveNonzeroContex{[plane][(startX >> 2) + i] = nonzero

LeftNonzeroContext[plane][(startY >> 2) +i] = nonzero

}

blockldx ++

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

51

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

6.4.22 Get uv size syntax

get_uv_tx_size() { Type
if (MiSize < BLOCK_8X8)
return TX_4X4
return Min(tx_size, max_txsize_lookup[get_plane_block_size(MiSize, 1)1])

6.4.23 Get plane block size syntax

get_plane_block_size(subsize, plane) { Type
subx = plane > 0 ? subsampling_x: 0
suby = plane > 0 ? subsampling_y : 0
return ss_size_lookup[subsize][subx][suby]

The ss_size lookup table is defined as:

ss_size_lookup[BLOCK_SIZES][2][2]={

{{BLOCK_4X4, BLOCK_INVALID}, {BLOCK_INVALID, BLOCK_INVALID}},
{{BLOCK_4X8, BLOCK 4X4}, {BLOCK_INVALID, BLOCK_INVALID}},
{{BLOCK_8X4, BLOCK_INVALID}, {BLOCK_4X4, BLOCK_INVALID}},
{{BLOCK_8X8, BLOCK 8X4}, {BLOCK 4X8, BLOCK_4X4}},
{{BLOCK_8X16, BLOCK_8X8}, {BLOCK_INVALID, BLOCK_ 4X8}},
{{BLOCK_16X8, BLOCK_INVALID}, {BLOCK_8X8, BLOCK_ 8X4}},
{{BLOCK_16X16, BLOCK_16X8}, {BLOCK_8X16, BLOCK_8X8}},
{{BLOCK_16X32, BLOCK_16X16}, {BLOCK_INVALID, BLOCK_8X16}},
{{BLOCK_32X16, BLOCK_INVALID}, {BLOCK_16X16, BLOCK_16X8}},
{{BLOCK_32X32, BLOCK_32X16}, {BLOCK_16X32, BLOCK_16X16}},
{{BLOCK_32X64, BLOCK_ 32X32}, {BLOCK_INVALID, BLOCK_16X32}},
{{BLOCK_64X32, BLOCK_INVALID}, {BLOCK_32X32, BLOCK_ 32X16}},
{{BLOCK_64X64, BLOCK_64X32}, {BLOCK_32X64, BLOCK_ 32X32}},

6.4.24 Token syntax

tokens(plane, startX, startY, txSz, blockldx) { Type
segEob = 16 << (xSz << 1)
scan = get_scan(plane, txSz, blockldx)
checkEob = 1
for(c = 0; c <segEob; c++) {
pos = scan[c]
band = (txSz == TX_4X4) ? coefband_4x4[c] : coefband_8x8plus] c]
if (checkEob) {
more_coefs T
if (more_coefs ==0)
break

52 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

token T
TokenCache[pos] = energy_class[token]
if (token == ZERO_TOKEN) {
Tokens[pos]=0
checkEob =0
}else {
coef = read_coef(token)
sign_bit L(1)
Tokens][pos] = sign_bit ? -coef : coef
checkEob =1
}
}
nonzero =c>0
EobTotal += nonzero
for (i =c;i<segEob;i++)
Tokens[scan[i]]=0
return nonzero
}
6.4.25 Get scan syntax
get_scan(plane, txSz, blockldx) { Type

if (plane > 0 || txSz == TX_32X32) {

TxType = DCT_DCT

} else if (txSz == TX_4X4) {

if (Lossless || is_inter)

TxType = DCT_DCT

else
TxType = mode2txfm_map[MiSize < BLOCK_8X8 ?
sub_modes] blockldx] : y_mode]
}else {
TxType = mode2txfm_map[y_mode]
}

if (txSz == TX_4X4) {

if (TxType == ADST_DCT)

scan = row_scan_4x4

else if (TxType == DCT_ADST)

scan = col_scan_4x4

else

scan = default_scan_4x4

}else if (txSz == TX_8X8) {

if (TxType == ADST_DCT)

scan = row_scan_8x8

else if (TxType == DCT_ADST)

scan = col_scan_8x8

else

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

53

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

scan = default_scan_8x8
}else if (txSz == TX_16X16) {
if (TxType == ADST_DCT)
scan = row_scan_16x16
else if (TxType == DCT_ADST)
scan = col_scan_16x16

else

scan = default_scan_16x16
}else {
scan = default_scan_32x32

}

return scan

6.4.26 Coef syntax

read_coef(token) { Type

cat = extra_bits[token][0]

numExtra = extra_bits[token][1]

coef = extra_bits[token][2]

if (token == DCT_VAL_CATEGORY®6) {

for (e = 0; e <BitDepth - 8; e++) {

high_bit B(255)
coef += high_bit << (5 + BitDepth - €)

}

}

for (e = 0; e < numExtra; e++) {
coef_bit B(cat_probs[cat][e])
coef += coef_bit << (numExtra- 1 -¢e)

}

return coef

where extra_bits is defined as:

extra_bits[11][3]={
{0, 0, 0},
{0,0, 1},
{0,0, 2},
{0,0, 3},
{0,0, 4},
{1,1, 5},
{2,2,7},
{3, 3, 11},
{4, 4,19},
{5, 5, 35},

54 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{6, 14, 67)

}

and cat_probs is defined as:

cat_probs[7][14]={

{0},

{159},

{165, 145},

{173, 148, 140},

{176, 155, 140, 135},

{180, 157, 141, 134, 130},

{ 254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129}

}

6.5 Motion vector prediction

The motion vector prediction is described in the following sections. This is treated as part of the syntax
because it is necessary to do motion vector prediction in order to decode the syntax elements (due to the use

of the use_mv_hp function inside read_mv which needs access to the final motion vectors).
6.5.1 Find MV refs syntax

find_mv_refs(refFrame, block) {

Type

RefMvCount = 0

differentRefFound = 0

contextCounter = 0

RefListMv[0] = ZeroMv

RefListMv[1] = ZeroMv

mv_ref_search = mv_ref_blocks[MiSize]

for (i=0;i<2;i++){

candidateR = MiRow + mv_ref _search[i][0]

candidateC = MiCol + mv_ref _search[i][1]

if (is_inside(candidateR, candidateC)) {

differentRefFound = 1

contextCounter += mode_2 counter[YModes| candidateR][candidateC]]

for (j=0;j<2;j++){

if (RefFrames[candidateR][candidateC][j] == refFrame) {

get_sub_block_mv(candidateR, candidateC, j, mv_ref _search[i][1], block)

add_mv_ref_list(j)

break

}

}

for (i = 2; i < MVREF_NEIGHBOURS; i++) {

candidateR = MiRow + mv_ref _search[i][0]

candidateC = MiCol + mv_ref _search[i][1]

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

55

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (is_inside(candidateR, candidateC)) {

differentRefFound = 1

if_ same_ref frame_add_mv(candidateR, candidateC, refFrame, 0)

}

}

if (UsePrevFrameMvs) {

if_ same_ref frame_add_mv(MiRow, MiCol, refFrame, 1)

}

if (differentRefFound) {

for (i=0;i < MVREF_NEIGHBOURS; i++) {

candidateR = MiRow + mv_ref _search[i][0]

candidateC = MiCol + mv_ref _search[i][1]

if (is_inside(candidateR, candidateC)) {

if_diff_ref_frame_add_mv(candidateR, candidateC, refFrame, 0)

}

}

if (UsePrevFrameMvs) {

if_diff_ref_frame_add_mv(MiRow, MiCol, refFrame, 1)

}

ModeContext[refFrame] = counter_to_context[contextCounter]

for (i=0;i<MAX_MV_REF_CANDIDATES; i++)

clamp_mv_ref(i)

The mv_ref_blocks table contains candidate locations to search for motion vectors and is defined as:

mv_ref_blocks[BLOCK_SIZES]| MVREF_NEIGHBOURS][2] = {

{{-1, 0}, {0, -1}, {-1, -1}, {2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
{{t-1, 0}, {0, -1}, {-1, -1}, {2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
{{-1, 0}, {0, -1}, {-1, -1}, {2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
{{t-1, 0}, {0, -1}, {-1, -1}, {2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
{{0, -1}, -1, 0}, {1, -1}, {-1, -11, {0, -2}, {-2, O}, {-2, -1}, {-1, -2},
{{t-1, 0}, {0, -1}, {1, 1} {1, -1}, {2, 0}, {0, -2}, {1, -2}, {-2, -1},
{{-1, 0}, {0, -1}, {1, 13, {1, -1}, {-1, -1}, {3, 0}, {0, -3}, {-3, -3}},
{{0, -1}, -1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {3, O}, {-3, -3}},
{{-1, 0}, {0, -1}, {1, 2}, {-1, -1}, {1, -1}, {3, 0}, {0, -3}, {-3, -3}},
{1, 13 {1, 1), {1, 23 {2, -1}, {1, 1), {3, 03, {0, -3}, {-3, -3}},
{{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {:3, 0}, {2, -1}},
{{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {3, 0}, {0, -3}, {-1, 2}},
{{t-1, 3} {3, -1}, {1, 41, {4, -1}, {1, -1}, {1, 0}, {0, -1}, {-1, 6}}

The mode_2_counter table is defined as:

| mode_2_counter] MB_MODE_COUNT] = {

56 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

9,9,9,9,9 9 9 9 9, 9 0,0, 3 1
}

The counter_to_context table is defined as:

counter_to_context[19] ={
BOTH_PREDICTED,
NEW_PLUS _NON_INTRA,
BOTH_NEW,
ZERO_PLUS_PREDICTED,
NEW_PLUS _NON_INTRA,
INVALID_CASE,
BOTH_ZERO,
INVALID_CASE,
INVALID_CASE,
INTRA_PLUS_NON_INTRA,
INTRA_PLUS_NON_INTRA,
INVALID_CASE,
INTRA_PLUS_NON_INTRA,
INVALID_CASE,
INVALID_CASE,
INVALID_CASE,
INVALID_CASE,
INVALID_CASE,
BOTH_INTRA

6.5.2 Is inside syntax

is_inside determines whether a candidate position is accessible for motion vector prediction. Moving across
the top and bottom tile edges is allowed, but moving across the left and right tile edges is prohibited.

is_inside(candidateR, candidateC) { Type
return (candidateR >= 0 && candidateR < MiRows
&& candidateC >= MiColStart && candidateC < MiColEnd)

6.5.3 Clamp mv ref syntax

clamp_mv_ref(i){ Type
RefListMv[i][0] = clamp_mv_row(RefListMv[i][0], MV_BORDER)
RefListMv[i][1] = clamp_mv_col(RefListMv[i][1], MV_BORDER)

6.5.4 Clamp mv row syntax

clamp_mv_row(mvec, border) { Type
bh = num_8x8_blocks_high_lookup[MiSize]
mbToTopEdge = -((MiRow * MI_SIZE) * 8)

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 57

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

mbToBottomEdge = ((MiRows - bh - MiRow) * MI_SIZE) * 8
return Clip3(mbToTopEdge - border, mbToBottomEdge + border, mvec)

6.5.5 Clamp mv col syntax

clamp_mv_col(mvec, border) { Type
bw = num_8x8_blocks_wide_lookup[MiSize]
mbToLeftEdge = -((MiCol * MI_SIZE) * 8)
mbToRightEdge = ((MiCols - bw - MiCol) * MI_SIZE) * 8
return Clip3(mbToLeftEdge - border, mbToRightEdge + border, mvec)

6.5.6 Add mv ref list syntax

add_mv_ref_list(reflList) { Type
if (RefMvCount >=2))
return
if (RefMvCount > 0) {
if (CandidateMv] refList] == RefListMv[0])
return

}
RefListMv[RefMvCount] = CandidateMv][refList]
RefMvCount++

6.5.7 If same ref frame add syntax

if_ same_ref frame_add_mv(candidateR, candidateC, refFrame, usePrev) { Type
for (j=0;j<2;j++){
get_block_myv(candidateR, candidateC, j, usePrev)
if (CandidateFrame[j] == refFrame) {
add_mv_ref_list(j)
return

6.5.8 If diff ref frame add syntax

if_diff_ref_frame_add_mv(candidateR, candidateC, refFrame, usePrev) { Type

for(j=0;j<2;j++)

get_block_myv(candidateR, candidateC, j, usePrev)

mvsSame = (CandidateMv[0] == CandidateMv[11])

if (CandidateFrame[0] > INTRA_FRAME && CandidateFrame[0] != refFrame) {

scale_mv(0, refFrame)

add_mv_ref list(0)

}

58 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (CandidateFrame[1] > INTRA_FRAME && CandidateFrame[1] != refFrame && !mvsSame) {

scale_mv (1, refFrame)

add_mv_ref_list(1)

}

6.5.9 Scale mv syntax

scale_mv(refList, refFrame) { Type
candFrame = CandidateFrame[refList]
if (ref_frame_sign_bias[candFrame] != ref_frame_sign_bias[refFrame])
for (j=0;j<2;j++)
CandidateMv[refList][j] *= -1
}
6.5.10 Get block mv syntax
get_block_myv(candidateR, candidateC, reflList, usePrev) { Type
if (usePrev){
CandidateMv][refList] = PrevMvs[candidateR][candidateC][refList]
CandidateFrame] refList] = PrevRefFrames| candidateR][candidateC][refList]
}else {
CandidateMv][refList] = Mvs[candidateR][candidateC][refList]
CandidateFrame] refList] = RefFrames| candidateR][candidateC][refList]
}
}
6.5.11 Get sub block mv syntax
get_sub_block_mv(candidateR, candidateC, refList, deltaCol, block) { Type
idx = (block >=0) ? idx_n_column_to_subblock[block][deltaCol ==01]: 3
CandidateMv][refList] = SubMvs[candidateR][candidateC][refList][idx]
}
The lookup table is defined as:
idx_n_column_to_subblock[4][2] = {
{1, 2},
{1, 3},
{3. 2},
{3, 3}
}
6.5.12 Find best ref mvs syntax
find_best_ref _mvs(refList) { Type

for (i=0;i<MAX_MV_REF_CANDIDATES; i++) {

deltaRow = RefListMv[i][0]

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

59

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

deltaCol = RefListMv[i][1]

if (lallow_high_precision_mv || luse_mv_hp(RefListMv[i])) {

if (deltaRow & 1)

deltaRow += (deltaRow >0 ? -1: 1)

if (deltaCol & 1)

deltaCol += (deltaCol >0 ? -1 : 1)

}

RefListMv[i][0] = clamp_mv_row(deltaRow,

(BORDERINPIXELS - INTERP_EXTEND) << 3)

RefListMv[i][1] = clamp_mv_col(deltaCol,

(BORDERINPIXELS - INTERP_EXTEND) << 3)

}

NearestMv] refList] = RefListMv[0]

NearMv[refList] = RefListMv[1]

BestMv] refList] = RefListMv[0]

6.5.13 Use mv hp syntax

use_mv_hp(deltaMv) { Type
return ((Abs(deltaMv[0]) >> 3) < COMPANDED_MVREF_THRESH &&
(Abs(deltaMv[1 1) >> 3) < COMPANDED_MVREF_THRESH)
}
6.5.14 Append sub8x8 mvs syntax
append_sub8x8_mvs(block, refList) { Type

60

find_mv_refs(ref_frame[refList], block)

dst=0

if (block ==0) {

for(i=0;i<2;i++)

sub8x8MvsJ dst++] = RefListMv[i]

} else if (block <=2){

sub8x8MvsJ dst++] = BlockMvsJ refList][0]

}else {

sub8x8MvsJ dst++] = BlockMvsJ refList][2]

for (idx = 1; idx >= 0 && dst < 2; idx--)

if (BlockMvsJ refList][idx] != sub8x8Mvs[01])

sub8x8MvsJ dst++] = BlockMvsJ refList][idx]

}

for(n=0;n<2&&dst<2;n++)

if (RefListMv[n]!= sub8x8Mvs[0])

sub8x8MvsJ[dst++] = RefListMv[n]

if (dst<2)

sub8x8Mvs|[dst++] = ZeroMv

NearestMv] refList] = sub8x8Mvs[0]

NearMv[refList] = sub8x8Mvs[1]

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

61

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

7 Bitstream semantics

This section specifies the meaning of the syntax elements read in the syntax structures.
7.1 Frame semantics

The bitstream consists of a sequence of coded frames.

Each coded frame is given to the decoding process in turn as a bitstream along with a variable sz that gives
the total number of bytes in the coded frame.

Methods of framing the coding frames in a container format are outside the scope of this Specification.
However, one common method of packing several frames into a single superframe is described in Annex B.

padding_bit shall be equal to 0.

7.1.1 Trailing bits semantics

zero_bit shall be equal to 0 and is inserted into the bitstream to align the bit position to a multiple of 8 bits.
7.1.2 Refresh probs semantics

load_probs(ctx) is a function call that indicates that the probability tables should be loaded from frame
context number ctx in the range 0 to 3. When this function is invoked the following takes place:

- A copy of each probability table (except tx_probs and skip_prob) is loaded from an area of memory
indexed by ctx. (The memory contents of these frame contexts have been initialized by previous calls to
save_probs).

load_probs2(ctx) is a function call that indicates that the probability tables tx_probs and skip_prob should
be loaded from frame context number ctx in the range 0 to 3. When this function is invoked the following
takes place:

- A copy of the probability tables called tx_probs and skip_prob are loaded from an area of memory indexed
by ctx.

adapt_coef_probs is a function call that indicates that the coefficient probabilities should be adjusted based
on the observed counts. This process is described in section 8.4.3.

adapt_noncoef_probs is a function call that indicates that the probabilities (for reading syntax elements other
than the coefficients) should be adjusted based on the observed counts. This process is described in section
8.4.4.

clear_counts is a function call that indicates that all the counters for different syntax elements should be reset
to 0. This process is described in section 8.3.

7.2 Uncompressed header semantics
frame_marker shall be equal to 2.

profile_low_bit and profile_high_bit combine to make the variable Profile. VP9 supports 4 profiles:

Profile Bit depth SRGB Colorspace Chroma subsampling
support
0 8 No YUV 4:2:0
1 8 Yes YUV 4:2:2, YUV 4:4:0 or YUV 4:4:4
2 10 or 12 No YUV 4:2:.0
3 100r12 Yes YUV 4:2:2, YUV 4:4:0 or YUV 4:4:4

reserved_zero shall be equal to 0.

show_existing_frame equal to 1, indicates the frame indexed by frame_to_show_map_idx is to be displayed;
show_existing_frame equal to 0 indicates that further processing is required.

frame_to_show_map_idx specifies the frame to be displayed. It is only available if show_existing_frame is 1.

62 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

LastFrameType contains the frame_type for the previous frame.

NOTE - LastFrameType is undefined for the first frame, but this does not cause a problem as the first
frame will be an intra frame and in this case the value for LastFrameType is not accessed.

frame_type equal to 0 indicates that the current frame is a key frame; frame_type equal to 1 indicates that the
current frame is not a key frame (it is therefore an inter frame or an intra-only frame).

frame_type | Name of frame_type
0 KEY_FRAME

1 NON_KEY_FRAME

It is possible for bitstreams to start with a non key frame and still be decodable. In this case there are a
number of additional constraints on the bitstream that are detailed in section 8.2.

error_resilient_mode equal to 1 indicates that error resilient mode is enabled; error_resilient_mode equal to
0 indicates that error resilient mode is disabled.

NOTE — Error resilient mode allows the syntax of a frame to be decoded independently of previous frames.

intra_only equal to 1 indicates that the frame is an intra-only frame; intra_only equal to 0 indicates that the
frame is an inter frame.

reset_frame_context specifies whether the frame context should be reset to default values:
- 0 or 1 means do not reset any frame context

- 2 resets just the context specified in the frame header

- 3resets all contexts.

refresh_frame_flags contains a bitmask that specifies which reference frame slots will be updated with the
current frame after it is decoded.

See section 8.10 for details of the frame update process.

ref_frame_idx specifies which reference frames are used by inter frames. It is a requirement of bitstream
conformance that the selected reference frames match the current frame in bit depth, profile, chroma
subsampling, and color space.

ref_frame_sign_bias specifies the intended direction of the motion vector in time for each reference frame. A
sign bias equal to 0 indicates that the reference frame is a backwards reference; a sign bias equal to 1
indicates that the reference frame is a forwards reference.

NOTE — The sign bias is just an indication that can improve the accuracy of motion vector prediction and is
not constrained to reflect the actual output order of pictures.

allow_high_precision_mv equal to 0 specifies that motion vectors are specified to quarter pel precision;
allow_high_precision_mv equal to 1 specifies that motion vectors are specified to eighth pel precision.

refresh_frame_context equal to 1 indicates that the probabilities computed for this frame (after adapting to
the observed frequencies if adaption is enabled) should be stored for reference by future frames.
refresh_frame_context equal to 0 indicates that the probabilities should be discarded at the end of the frame.

See section 8.4 for details of the adaption process.

frame_parallel_decoding_mode equal to 1 indicates that parallel decoding mode is enabled;
frame_parallel_decoding_mode equal to 0 indicates that parallel decoding mode is disabled.

NOTE - Parallel decoding mode means that the probabilities are not adapted based on the observed
frequencies. This means that the next frame can start to be decoded as soon as the frame headers of the
current frame have been processed. This has most of the benefits of error resilient mode for multi-core
decoding, without needing to repeat sending updated probabilities for each frame.

frame_context_idx indicates the frame context to use.

header_size_in_bytes indicates the size of the compressed header in bytes.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 63

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

setup_past_independence is a function call that indicates that this frame can be decoded without
dependence on previous coded frames. When this function is invoked the following takes place:

- FeatureData[i][j] and FeatureEnabled[i][j] are set equal to 0 fori=0..7 and j = 0..3.

- segmentation_abs_or_delta_update is set equal to 0.

- PrevSegmentlds| row][col] is set equal to O for row = 0..MiRows-1 and col = 0..MiCols-1.
- loop_filter_delta_enabled is set equal to 1.

- loop_filter_ref_deltas[INTRA_FRAME] is set equal to 1.

- loop_filter_ref deltas[LAST_FRAME] is set equal to 0.

- loop_filter_ref_deltas] GOLDEN_FRAME] is set equal to -1.

- loop_filter_ref_deltas| ALTREF_FRAME] is set equal to -1.

- loop_filter_mode_deltas[i] is set equal to 0 fori=0..1.

- ref_frame_sign_bias[i]is set equal to 0 fori=0..3.

- The probability tables are reset to default values. The default values are specified in section 10.5.

save_probs(ctx) is a function call that indicates that indicates that all the probability tables should be saved
into frame context number ctx in the range 0 to 3. When this function is invoked the following takes place:

A copy of each probability table is saved in an area of memory indexed by ctx. The memory contents of these
frame contexts are persistent in order to allow a subsequent inter frame to reload the probability tables.

7.21 Frame sync semantics
frame_sync_byte_0 shall be equal to 0x49.
frame_sync_byte_1 shall be equal to 0x83.
frame_sync_byte_2 shall be equal to 0x42.
7.2.2 Color config semantics

ten_or_twelve_bit equal to 1 indicates the bit depth is 12 bits; ten_or_twelve_bit equal to 0 indicates that the
bit depth is 10 bits.

color_space specifies the color space of the stream:

color_space Name of color space Description

0 CS_UNKNOWN Unknown (in this case the
color space must be
signaled outside the VP9
bitstream).

1 CS_BT_601 Rec. ITU-R BT.601-7

2 CS_BT_709 Rec. ITU-R BT.709-6

3 CS_SMPTE_170 SMPTE-170

4 CS_SMPTE_240 SMPTE-240

5 CS_BT_2020 Rec. ITU-R BT.2020-2

6 CS_RESERVED Reserved

7 CS_RGB sRGB (IEC 61966-2-1)

It is a requirement of bitstream conformance that color_space is not equal to CS_RGB when profile_low_bit is
equal to 0.

NOTE — Note that VP9 passes the color space information in the bitstream including Rec. ITU-R BT.2020-2,
however, VP9 does not specify if it is in the form of “constant luminance” or “nonconstant luminance”. As
such, application should rely on the signaling outside of the VP9 bitstream. If there is no such signaling, the
application may assume nonconstant luminance for Rec. ITU-R BT.2020-2.

64 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

color_range specifies the black level and range of the luma and chroma signals as specified in Rec. ITU-R
BT.709-6 and Rec. ITU-R BT.2020-2:

color_range Description Details
0 Studio swing For BitDepth equals 8:

Y is between 16 and 235 inclusive.

U and V are between 16 and 240 inclusive.
For BitDepth equals 10:

Y is between 64 and 940 inclusive.

U and V are between 64 and 960 inclusive.
For BitDepth equals 12:

Y is between 256 and 3760.

U and V are between 256 and 3840 inclusive.

1 Full swing No restriction on Y, U, V values.

NOTE - Note that this specification does not enforce the range of YUV values when the YUV range is
signaled as Studio swing. Therefore the application should perform additional clamping and color
conversion operations according to the specified range.

subsampling_x, subsampling_y specify the chroma subsampling format:

subsampling_x subsampling_y Description
0 0 YUV 4:4:4
0 1 YUV 4:4:0
1 0 YUV 4:2:2
1 1 YUV 4:2:0

It is a requirement of bitstream conformance that either subsampling_x is equal to 0 or subsampling_y is equal
to 0 when profile_low_bit is equal to 1.

NOTE — In Chroma subsampling format 4:2:0 and 4:2:2, VP9 assumes that chroma samples are co-located
with luma samples if there is no explicit signaling outside of the VP9 bitstream. When there is explicit
signaling at the container level, the signaled information overrides VP9’s default assumption.

reserved_zero shall be equal to 0.

7.2.3 Frame size semantics

frame_width_minus_1 plus one is the width of the frame in pixels.
frame_height_minus_1 plus one is the height of the frame in pixels.
7.2.4 Render size semantics

The render size is provided as a hint to the application about the desired display size. It has no effect on the
decoding process.

render_and_frame_size_different equal to 0 means that the render width and height are inferred from the
frame width and height. render_and_frame_size_different equal to 1 means that the render width and height
are explicitly coded in the bitstream.

NOTE - It is legal for the bitstream to explicitly code the render dimensions in the bitstream even if they are
an exact match for the frame dimensions.

render_width_minus_1 plus one is the render width of the frame in pixels.
render_height_minus_1 plus one is the render height of the frame in pixels.
7.2.5 Frame size with refs semantics

For inter frames, the frame size is either set equal to the size of a reference frame, or can be sent explicitly.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 65

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

found_ref equal to 1 indicates that the frame dimensions can be inferred from reference frame i where i is the
loop counter in the syntax parsing process for frame_size_with_refs. found_ref equal to O indicates that the
frame dimensions are not inferred from reference frame i.

Once the FrameWidth and FrameHeight have been computed for an inter frame, it is a requirement of
bitstream conformance that for at least one value of i in the range 0..2, all the following conditions are true:

- 2 * FrameWidth >= RefFrameWidth[ref frame_idx[i]]
- 2 * FrameHeight >= RefFrameHeight[ref frame_idx[i]]
- FrameWidth <= 16 * RefFrameWidth[ref _frame_idx[i]]
- FrameHeight <= 16 * RefFrameHeight[ref frame_idx[i]]
NOTE - This is a requirement even if all the blocks in an inter frame are coded using intra prediction.
7.2.6 Compute image size semantics
When compute_image_size is invoked, the following ordered steps occur:

1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have
changed in value compared to the previous time this function was invoked, then the segmentation map is
cleared to all zeros by setting Segmentld[row][col] equal to 0 for row = 0..MiRows-1 and col =
0..MiCols-1.

2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true:
a. This is not the first time compute_image_size is invoked.

b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function
was invoked.

c. show_frame was equal to 1 the previous time this function was invoked.
d. error_resilient_mode is equal to 0.

e. Framelsintrais equal to 0.

Otherwise, UsePrevFrameMyvs is set equal to 0.

NOTE - compute_image_size is not invoked and therefore segmentation map is not cleared when
show_existing_frame is equal to 1 even if the shown frame has different dimensions.

7.2.7 Interpolation filter semantics

is_filter_switchable equal to 1 indicates that the filter selection is signaled at the block level;
is_filter_switchable equal to 0 indicates that the filter selection is signaled at the frame level.

raw_interpolation_filter is used to compute interpolation_filter.

interpolation_filter specifies the filter selection used for performing inter prediction:

interpolation_filter Name of interpolation_filter
0 EIGHTTAP
1 EIGHTTAP_SMOOTH
2 EIGHTTAP_SHARP
3 BILINEAR
4 SWITCHABLE

7.2.8 Loop filter semantics
loop_filter_level indicates the loop filter strength.

loop_filter_sharpness indicates the sharpness level. The loop_filter level and loop_filter_sharpness
together determine when a block edge is filtered, and by how much the filtering can change the sample values.

The loop filter process is described in section 8.8.

66 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

loop_filter_delta_enabled equal to 1 means that the filter level depends on the mode and reference frame
used to predict a block. loop_filter_delta_enabled equal to 0 means that the filter level does not depend on
the mode and reference frame.

loop_filter_delta_update equal to 1 means that the bitstream contains additional syntax elements that
specify which mode and reference frame deltas are to be updated. loop_filter_delta_update equal to 0 means
that these syntax elements are not present.

update_ref_delta equal to 1 means that the bitstream contains the syntax element loop_filter_ref delta;
update_ref_delta equal to 0 means that the bitstream does not contain this syntax element.

loop_filter_ref_deltas contains the adjustment needed for the filter level based on the chosen reference
frame. If this syntax element is not present in the bitstream, it maintains its previous value.

update_mode_delta equal to 1 means that the bitstream contains the syntax element
loop_filter_mode_deltas; update_mode_delta equal to 0 means that the bitstream does not contain this syntax
element.

loop_filter_mode_deltas contains the adjustment needed for the filter level based on the chosen mode. If
this syntax element is not present in the bitstream, it maintains its previous value.

NOTE — The previous values for loop_filter_mode_deltas and loop_filter_ref deltas are intially set by the
setup_past_independence function and can be subsequently modified by these syntax elements being
coded in a previous frame.

7.2.9 Quantization params syntax

The residual is specified via decoded coefficients which are adjusted by one of four quantization parameters
before the inverse transform is applied. The choice depends on the plane (Y or UV) and coefficient position
(DC/AC coefficient). The Dequantization process is specified in section 8.6.

base_¢q_idx indicates the base frame qgindex. This is used for Y AC coefficients and as the base value for the
other quantizers.

delta_qg_y_dc indicates the Y DC quantizer relative to base_q_idx.

delta_qg_uv_dc indicates the UV DC quantizer relative to base_q_idx.

delta_qg_uv_ac indicates the UV AC quantizer relative to base_q_idx.

delta_coded specifies that the delta_q syntax element is present in the bitstream.
delta_q specifies an offset (relative to base_q_idx) for a particular quantization parameter.

Lossless is computed from the syntax elements and if equal to 1 indicates that the frame is coded using a
special 4x4 transform designed for encoding frames that are bit-identical with the original frames.

7.2.10 Segmentation params syntax

VP9 provides a means of segmenting the image and then applying various adjustments at the segment level.
Up to 8 segments may be specified for any given frame. For each of these segments it is possible to specify:
1. A quantizer (absolute value or delta).

2. Aloop filter strength (absolute value or delta).

3. A prediction reference frame.

4. A block skip mode that implies both the use of a (0,0) motion vector and that no residual will be coded.

Each of these data values for each segment may be individually updated at the frame level. Where a value is
not updated in a given frame, the value from the previous frame persists. The exceptions to this are key
frames, intra only frames or other frames where independence from past frame values is required (for
example to enable error resilience). In such cases all values are reset as described in the semantics for
setup_past_independence.

The segment affiliation (the segmentation map) is stored at the resolution of 8x8 blocks. If no explicit update
is coded for a block’s segment affiliation, then it persists from frame to frame (until reset by a call to
setup_past_independence).

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 67

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

segmentation_enabled equal to 1 indicates that this frame makes use of the segmentation tool;
segmentation_enabled equal to 0 indicates that the frame does not use segmentation.

segmentation_update_map equal to 1 indicates that the segmentation map should be updated during the
decoding of this frame. segmentation_update_map equal to 0 means that the segmentation map from the
previous frame is used.

segmentation_tree_probs specify the probability values to be used when decoding segment_id.
segmentation_pred_prob specify the probability values to be used when decoding seg_id_predicted.

segmentation_temporal_update equal to 1 indicates that the updates to the segmentation map are coded
relative to the existing segmentation map. segmentation_temporal_update equal to 0 indicates that the new
segmentation map is coded without reference to the existing segmentation map.

segmentation_update_data equal to 1 indicates that new parameters are about to be specified for each
segment. segmentation_update_data equal to 0 indicates that the segmentation parameters should keep
their existing values.

segmentation_abs_or_delta_update equal to 0 indicates that the segmentation parameters represent
adjustments relative to the standard values. segmentation_abs_or_delta_update equal to 1 indicates that the
segmentation parameters represent the actual values to be used.

feature_enabled equal to O indicates that the corresponding feature is unused and has value equal to 0.
feature_enabled equal to 1 indicates that the feature value is coded in the bitstream.

feature_value specifies the magnitude of the feature data for a segment feature.

feature_sign equal to 1 indicates that the feature data is given by -feature_value. feature_sign equal to 0
indicates that the feature data is given by feature_value. It is a requirement of bitstream conformance that
feature_sign is equal to 0 when segmentation_abs_or_delta_update is equal to 1.

7.2.11 Tile info semantics
increment_tile_cols_log2 indicates whether the tile width should be increased.

tile_cols_log2 specifies the base 2 logarithm of the width of each tile (where the width is measured in units of
8x8 blocks).

It is a requirement of bitstream conformance that tile_cols_log2 is less than or equal to 6.
increment_tile_rows_log2 indicates whether the tile height should be increased.

tile_rows_log2 specifies the base 2 logarithm of the height of each tile (where the height is measured in units
of 8x8 blocks).

7.3 Compressed header semantics
The compressed header specifies the transform mode and updates to the probability tables.
7.3.1 Tx mode semantics

tx_mode specifies how the transform size is determined:

tx_mode Name of tx_mode
0 ONLY_4X4
1 ALLOW_8X8
2 ALLOW_16X16
3 ALLOW_32X32
4 TX_MODE_SELECT

For tx_mode not equal to 4, the inverse transform will use the largest transform size possible up to the limit set
in tx_mode. For tx_mode equal to 4, the choice of size is specified explicitly for each block.

68 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

tx_mode_select equal to 1 indicates that the transform mode is specified within each mode info header.
tx_mode_select equal to 0 indicates that the transform mode is computed based on the size of the block and
the maximum transform size allowed by the frame header.

7.3.2 Diff update prob semantics

update_prob equal to 1 indicates that an adjustment to the probability is coded in the bitstream; update_prob
equal to 0 indicates that the previous value for probability should be used.

7.3.3 Decode term subexp semantics

bit, sub_exp_val, sub_exp_val_minus_16, sub_exp_val_minus_32, v are combined to specify an
adjustment to a probability in such a way that fewer bits are required to specify small adjustments.

7.3.4 Invremap prob semantics

deltaProb is passed into this function to indicate how much the probability should be adjusted. It is a
requirement of bitstream conformance that the value of deltaProb is strictly less than MAX_PROB.

7.3.5 Coef prob semantics

update_probs equal to 1 indicates that the coefficient probabilities should be adjusted. update_probs equal
to 0 indicates that the coefficient probabilities should maintain their previous values.

coef_probs specifies a set of probability models to be used for transform coefficients decoding. When frame
parallel mode is turned off, it first runs backward update according to the previous frame decoding information.
It then goes through forward probability model update via diff_update_prob, where it reads the difference in
probabilities from the bit-stream and adjust the effective model accordingly.

7.3.6 Frame reference mode semantics

non_single_reference equal to 1 specifies that compound prediction may be used; non_single_reference
equal to 0 specifies that compound prediction may not be used.

reference_select equal to 0 specifies that all inter blocks use compound prediction; reference_select equal to
1 specifies that the mode info for inter blocks contains the syntax element comp_mode that indicates whether
to use single or compound prediction.

reference_mode is a derived syntax element that specifies the type of inter prediction to be used:

reference_mode Name of reference_mode
0 SINGLE_REFERENCE
1 COMPOUND_REFERENCE
2 REFERENCE_MODE_SELECT

SINGLE_REFERENCE indicates that all the inter blocks use only a single reference frame to generate motion
compensated prediction.

COMPOUND_REFERENCE requires all the inter blocks to use compound mode. Single reference frame
prediction is not allowed.

REFERENCE_MODE_SELECT allows each individual inter block to select between single and compound
prediction modes.

7.3.7 Update mv prob semantics

update_mv_prob equal to 1 indicates that the motion vector probability should be adjusted. update_mv_prob
equal to 0 indicates that the motion vector probability should maintain its previous value.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 69

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

7.4 Tile level
7.4.1 Decode tiles semantics

tile_size specifies the size in bytes of the next coded tile. This size includes any padding bytes, but does not
include the 4 bytes that specify tile_size itself.

NOTE - It is possible for the tile dimensions to mean that a tile contains 0 superblocks. However, even in
this case the tile is still coded as defined in the syntax table, i.e. a tile_size syntax element followed by an
init_bool structure followed by an exit_bool structure.

clear_above_context is a function call that indicates that some arrays used to determine the probabilities
should be zeroed. When this function is invoked the arrays AboveNonzeroContext, AbovePartitionContext,
AboveSegPredContext should be set equal to 0.

NOTE — AboveNonzeroContext[plane][i] only needs to be set to 0 for i = 0..MiCols*2-1, for plane = 0..2.
AboveSegPredContext[i] only needs to be set to 0 for i = 0..MiCols-1.

However, AbovePartitionContext[i] should be set to 0 for i = 0..Sb64Cols*8-1 because this array can be
read for locations beyond MiCols.

7.4.2 Decode tile semantics

clear_left_context is a function call that indicates that some arrays used to determine the probabilities should
be zeroed. When this function is invoked the arrays LeftNonzeroContext, LeftPartitionContext,
LeftSegPredContext should be set equal to 0.

NOTE - LeftNonzeroContexi[plane][i] only needs to be set to 0 for i = 0..MiRows*2-1, for plane = 0..2.
LeftSegPredContext[i] only needs to be set to 0 for i = 0..MiRows-1.

However, LeftPartitionContext[i] should be set to 0 for i = 0..Sb64Rows*8-1 because this array can be
read for locations beyond MiRows.

7.4.3 Decode partition semantics

partition specifies how a block is partitioned:

partition Name of partition
0 PARTITION_NONE
1 PARTITION_HORZ
2 PARTITION_VERT
3 PARTITION_SPLIT

subsize is computed from partition and indicates the size of the component blocks within this block:

subsize Name of subsize
0 BLOCK 4X4

BLOCK_4X8

BLOCK_8X4

BLOCK_8X8
BLOCK_8X16
BLOCK_16X8
BLOCK_16X16
BLOCK_16X32
BLOCK_32X16
BLOCK_32X32
BLOCK_32X64
BLOCK_64X32
BLOCK_64X64

o2 ole|leNjo|jo|sw| N~

70 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The dimensions of these blocks are given in width, height order (e.g. BLOCK_8X16 corresponds to a block
that is 8 pixels wide, and 16 pixels high).

It is a requirement of bitstream conformance that at least one of the following conditions is true every time
subsize is computed:

- subsize < BLOCK_8X8
- get_plane_block_size(subsize, 1) is not equal to BLOCK_INVALID

NOTE - This requirement prevents the UV blocks from being too tall or too wide (i.e. having aspect ratios
outside the range 1:2 to 2:1).

7.4.4 Decode block semantics
MiRow is a variable holding the vertical location of the block in units of 8x8 pixels.
MiCol is a variable holding the horizontal location of the block in units of 8x8 pixels.

MiSize is a variable holding the size of the block with values having the same interpretation as in the
semantics for subsize.

Availl is equal to 0 if the information from the block above cannot be used; AvailU is equal to 1 if the
information from the block above can be used.

AvailL is equal to 0 if the information from the block to the left can not be used; AvailL is equal to 1 if the
information from the block to the left can be used.

NOTE - Information from a block in a different tile can be used if the block is above, but not if the block is
to the left.

7.4.5 Intra frame mode info semantics
This syntax is used when coding an intra block within an intra frame.

default_intra_mode specifies the direction of intra prediction filtering:

default_intra_mode Name of default_intra_mode
0 DC_PRED

V_PRED
H_PRED
D45_PRED
D135_PRED
D117_PRED
D153_PRED
D207_PRED
D63_PRED
TM_PRED

OV | [W|IN|~

default_uv_mode specifies the chrominance intra prediction mode using values with the same interpretation
as in the semantics for default_intra_mode.

7.4.6 Intra and inter segment id semantics
segment_id specifies which segment is associated with the current intra block being decoded.

seg_id_predicted equal to 1 specifies that the segment_id should be taken from the segmentation map.
seg_id_predicted equal to 0 specifies that the syntax element segment_id should be parsed.

NOTE — It is legal for seg_id_predicted to be equal to 0 even if the value coded for the segment_id is equal
to predictedSegmentlid.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 71

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

7.4.7 Skip semantics

skip equal to 0 indicates that there may be some transform coefficients to read for this block; skip equal to 1
indicates that there are no transform coefficients.

NOTE - It is legal for skip to be equal to 0 even if all the transform blocks contain immediate end of block
markers. However, in this case note that the process specified in section 6.4.4 will later modify the value of
skip to be equal to 1.

7.4.8 Tx size semantics

tx_size specifies the transform size to be used for this block:

tx_size Name of tx_size
0 TX_4X4
1 TX 8X8
2 TX _16X16
3 TX 32X32
NOTE - tx_size is decoded for skipped intra blocks because tx_size controls the granularity of the intra

prediction.

NOTE — The numerical value for tx_size can be interpreted as the base 2 logarithm of the width of the
transform block, where the width is measured in units of 4 samples.

7.4.9 Is inter semantics

is_inter equal to 0 specifies that the block is an intra block; is_inter equal to 1 specifies that the block is an
inter block.

7.4.10 Intra block mode info semantics
This syntax is used when coding an intra block within an inter frame.

intra_mode, sub_intra_mode, uv_mode specify the direction of intra prediction using values with the same
interpretation as for default_intra_mode.

7.4.11 Inter block mode info semantics
This syntax is used when coding an inter block.

inter_mode specifies how the motion vector used by inter prediction is obtained. An offset is added to
inter_mode to compute the y_mode as follows:

inter_mode y_mode Name of y_mode
0 10 NEARESTMV
1 11 NEARMV
2 12 ZEROMV
3 13 NEWMV

NOTE — The intra modes take values 0..9 so these y_mode values start at 10.

When seg_feature_active(SEG_LVL_SKIP) is set, y_mode is set equal to ZEROMV. It is a requirement of
bitstream conformance that whenever inter_block _mode_info is invoked and
seg_feature_active(SEG_LVL_SKIP) is equal to 1, MiSize shall be greater than or equal to BLOCK_8X8.

interp_filter specifies the type of filter used in inter prediction. Values 0..3 are allowed with the same
interpretation as for interpolation_filter.

NOTE — The syntax element interpolation_filter from the uncompressed header can specify the type of filter
to be used for the whole frame. If it is set to SWITCHABLE then the interp_filter syntax element is read
from the bitstream for every inter block.

72 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

7.4.12 Ref frames semantics

comp_mode specifies whether single or compound prediction is used. Values 0 and 1 are used with the
same interpretation as for reference_mode.

comp_ref specifies which variable reference frame should be used in compound prediction. An inter frame
specifies 3 reference frames that it may use. Depending on the sign bias values, one of these is chosen as a
fixed reference, and the other two are called variable references. Compound prediction makes use of two
reference frames, one is always the fixed reference, and the other is chosen based on comp_ref.

single_ref_p1 and single_ref_p2 are used in prediction from a single reference frame to specify which
reference frame should be used.

ref_frame[0] specifies which frame is used to compute the predicted samples for this block:

ref_frame[0] Name of ref_frame
0 INTRA_FRAME
1 LAST_FRAME
2 GOLDEN_FRAME
3 ALTREF_FRAME

ref_frame[1] specifies which additional frame is used in compound prediction:

ref_frame[1] Name of ref_frame
0 NONE (this block uses single
prediction or intra prediction)
1 LAST_FRAME
2 GOLDEN_FRAME
3 ALTREF_FRAME

7.4.13 MV semantics
ZeroMv represents a zero motion vector and is defined by ZeroMv[i] is equal to O fori = 0..1.

mv_joint specifies which components of the motion vector difference are non-zero:

mv_joint Name of mv_joint Changes row Changes col
0 MV_JOINT_ZERO No No
1 MV_JOINT_HNzvVZ No Yes
2 MV_JOINT_HZVNZ Yes No
3 MV_JOINT_HNZVNZ Yes Yes

The motion vector difference is added to the BestMv to compute the final motion vector in Mv. It is a
requirement of bitstream conformance that the resulting motion vector satisfies -(1<<14) < Mv[ref][comp] <
(1<<14) - 1 for comp=0..1.

7.4.14 MV component semantics

mv_sign equal to 0 means that the motion vector difference is positive; mv_sign equal to 1 means that the
motion vector difference is negative.

mv_class specifies the class of the motion vector difference. A higher class means that the motion vector
difference represents a larger update:

mv_class Name of mv_class
0 MV_CLASS 0
1 MV_CLASS_1

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 73

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

MV_CLASS 2
MV_CLASS 3
MV_CLASS 4
MV_CLASS 5
MV_CLASS 6
MV_CLASS_7
MV_CLASS 8
MV_CLASS 9
MV_CLASS_10

Ol N[o|oO|b[W|DN

-
o

mv_class0_bit specifies the integer part of the motion vector difference. This is only present in the bitstream
for class 0 motion vector differences.

mv_classO0_fr specifies the first 2 fractional bits of the motion vector difference. This is only present in the
bitstream for class 0 motion vector differences.

mv_class0_hp specifies the third fraction bit of the motion vector difference. This is only present in the
bitstream for class 0 motion vector differences.

myv_bit specifies bit i of the integer part of the motion vector difference.
mv_fr specifies the first 2 fractional bits of the motion vector difference.
mv_hp specifies the third fractional bit of the motion vector difference.
7.4.15 Residual semantics

AboveNonzeroContext and LeftNonzeroContext are arrays that store at a 4 sample granularity which
blocks contained coded coefficients.

predict_intra is a function call that indicates the conceptual point where intra prediction happens. When this
function is called, the intra prediction process specified in section 8.5.1 is invoked.

predict_inter is a function call that indicates the conceptual point where inter prediction happens. When this
function is called, the inter prediction process specified in section 8.5.2 is invoked.

reconstruct is a function call that indicates the conceptual point where inverse transform and reconstruction
happens. When this function is called, the reconstruction process specified in section 8.6.2 is invoked.

NOTE — The predict_inter, predict_intra, and reconstruct functions do not affect the syntax decode process.
7.4.16 Token semantics

more_coefs equal to 0 specifies that all the remaining coefficients in this transform block are equal to 0 and
that no more coefficients need to be parsed for this transform block. more_coefs equal to 1 indicates that
more coefficients should be read.

token specifies the size range of the transform coefficient:

token Name of token
0 ZERO_TOKEN

ONE_TOKEN
TWO_TOKEN
THREE_TOKEN
FOUR_TOKEN
DCT_VAL_CAT1
DCT_VAL_CAT2
DCT_VAL_CAT3
DCT_VAL_CAT4

(N[O AR [W|IN|—~

74 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

9 DCT_VAL_CAT5
10 DCT_VAL_CAT6

sign_bit equal to 0 indicates that the transform coefficient is given by coef; sign_bit equal to 1 indicates that
the transform coefficient is given by -coef.

nonzero is equal to 0 if the first more_coefs syntax element decoded for the transform block was equal to O;
nonzero is equal to 1 otherwise.

NOTE - It is legal for the transform block to be filled with zero coefficients without more_coefs being set
equal to 0. However, in this case note that nonzero is still set equal to 1. The variable nonzero
corresponds to the last scan position being non-zero, and not the actual presence of non-zero coefficients.

7.4.17 Coef semantics

high_bit is only present when the BitDepth is greater than 8 and token is equal to DCT_VAL_CATEGORY®6.
high_bit contains some additional most significant bits of the transform coefficients.

coef_bit represents the remaining bits of the transform coefficient. Different tokens specify different numbers
of remaining bits.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 75

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

8 Decoding process
8.1 General

Decoders shall produce output frames that are identical in all respects and have the same output order as
those produced by the decoding process specified herein.

The input to this process is a sequence of coded frames.
The output from this process is a sequence of decoded frames.
For each coded frame in turn the decoding process operates as follows:

1. The syntax elements for the coded frame are extracted as specified in sections 6 and 7. The syntax
tables include function calls indicating when the block decode processes should be triggered.

2. |If loop_filter_level is not equal to 0, the loop filter process as specified in section 8.8 is invoked once the
coded frame has been decoded.

3. If all of the following conditions are true, PrevSegmentlds] row][col] is set equal to
Segmentlds| row][col] for row = 0..MiRows-1, for col = 0..MiCols-1:

- show_existing_frame is equal to 0,
- segmentation_enabled is equal to 1,
- segmentation_update_map is equal to 1.
4. The output process as specified in section 8.9 is invoked.
5. The reference frame update process as specified in section 8.10 is invoked.
8.2 Frame order constraints
This section describes additional constraints on a bitstream that result from the choice of frame types.
If a sequence starts with a key frame, then the additional constraints are automatically satisfied.

Otherwise, the sequence can start with a number of non key frames (i.e. inter frames and intra only frames)
and extra care has to be taken to ensure that the decoding process is well defined. It is a requirement of
bitstream conformance that the following applies:

- When load_probs(ctx) is invoked, this must load an initialized set of probabilities, i.e. there must have
been an earlier invocation of save_probs(ctx).

- When ref_frame_idx[i] is decoded, it must identify an initialized reference frame, i.e. there must have
been an earlier decoded frame which had (refresh_frame_flags>>ref frame_idx[i])&1 equal to 1.

NOTE - This constraint means that the first coded frame cannot be an inter frame.
8.3 Clear counts process

This process is triggered when the function clear_counts is invoked during the syntax decode of the frame
described in section 6.1.

The following arrays store the number of times each value of a particular syntax element has been decoded in
a particular context.

counts_intra_mode[BLOCK_SIZE_GROUPS][INTRA_MODES]
counts_uv_mode[INTRA_MODES][INTRA_MODES]
counts_partition[PARTITION_CONTEXTS][PARTITION_TYPES]
counts_interp_filter[INTERP_FILTER_CONTEXTS][SWITCHABLE_FILTERS]
counts_inter_mode[INTER_MODE_CONTEXTS][INTER_MODES]
counts_tx_size[TX_SIZES][TX_SIZE_CONTEXTS][TX_SIZES]
counts_is_inter[IS_INTER_CONTEXTS][2]
counts_comp_mode[COMP_MODE_CONTEXTS][2]

76 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

counts_single_ref[REF_CONTEXTS][2][2]

counts_comp_ref[REF_CONTEXTS][2]

counts_skip[SKIP_CONTEXTS][2]

counts_mv_jointfMV_JOINTS]

counts_mv_sign[2][2]

counts_mv_class[2][MV_CLASSES]

counts_mv_class0_bit[2][CLASSO0_SIZE]

counts_mv_classO_fr[2][CLASSO_SIZE][MV_FR_SIZE]

counts_mv_class0_hp[2][2]

counts_mv_bits[2][MV_OFFSET_BITS][2]

counts_mv_fr[2][MV_FR_SIZE]

counts_mv_hp[2][2]

counts_token[TX_SIZES][BLOCK_TYPES][REF_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS][UNCONSTRAINED_NODES]

counts_more_coefs[TX_SIZES][BLOCK_TYPES][REF_TYPES]|[COEF_BANDS]
[PREV_COEF_CONTEXTS][2]

The numbers in square brackets define the size of each dimension of the array.
When the clear counts process is invoked, all of these counts are set equal to 0.
8.4 Probability adaptation process

This section defines two processes used to perform backward updates of probabilities based on the observed
frequencies of different syntax elements.

These processes are triggered at points defined by function calls in the refresh probs syntax table in section
6.1.2.

The processes make use of the functions merge_prob and merge_probs that are specified next.
8.4.1 Merge prob process

The inputs to this process are:

a variable preProb specifying the original probability for a boolean,
- variables ct0 and ct1 specifying the number of times the boolean was decoded as 0 and 1,

- a variable countSat indicating how many times the boolean needs to be decoded for the maximum
adaption to apply,

- avariable maxUpdateFactor specifying the maximum amount the probability can be adjusted.
The output is a variable outProb containing the updated probability.
The variable den representing the total times this boolean has been decoded is set equal to ctO + ct1.

The variable prob estimating the probability that the boolean is decoded as a 0 is set equal to (den == 0) ?
128 : Clip3(1, 255, (ct0 * 256 + (den >> 1))/ den).

The variable count is set equal to Min(ct0 + ct1, countSat).

The variable factor is set equal to maxUpdateFactor * count / countSat.

The return variable outProb is set equal to Round2(preProb * (256 - factor) + prob * factor, 8).
8.4.2 Merge probs process

The inputs to this process are:

- an array tree specifying the decode tree for a syntax element,

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 77

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

- avariable i specifying the current location in the decode tree,
- an array probs specifying the original probabilities for decoding the syntax element,
- an array counts containing the number of times each value for the syntax element was decoded,

- a variable countSat indicating how many times the boolean needs to be decoded for the maximum
adaption to apply,

- avariable maxUpdateFactor specifying the maximum amount the probability can be adjusted.

The outputs of this process are adjustments made to the input array named probs, and a return value
containing the total number of times this boolean was decoded.

The process is specified as follows:

merge_probs(tree, i, probs, counts, countSat, maxUpdateFactor) {
s =tree[i]
leftCount = (s <= 0) ? counts[-s] :
merge_probs(tree, s, probs, counts, countSat, maxUpdateFactor)

r=tree[i+1]
rightCount = (r <= 0) ? counts[-r]:
merge_probs(tree, r, probs, counts, countSat, maxUpdateFactor)

probs[i>>1]=
merge_prob(probs[i >> 1], leftCount, rightCount, countSat, maxUpdateFactor)
return leftCount + rightCount

}

8.4.3 Coefficient probability adaption process

This process is triggered when the function adapt_coef _probs is called from the refresh probs syntax table.
The variable updateFactor is set according to the type of this frame and the previous frame as follows:

- If Framelsintra is equal to 1, updateFactor is set equal to 112.

- Otherwise if LastFrameType is equal to KEY_FRAME, updateFactor is set equal to 128.

- Otherwise, updateFactor is set equal to 112.

Then the coefficient probabilities are updated as follows:

for(t=0;t<4; t++)
for(i=0;i<2;i++)
for (j=0;j<2;j++)
for (k=0; k <6; k++) {
maxL=(k==0)?73:6
for (1=0; I <maxL; I++){
merge_probs(small_token_tree, 2,
coef_probs[t][i][jI[KI[!],
counts_token[t][i][jI k][],
24, updateFactor)
merge_probs(binary_tree, 0,
coef_probs[t][i][jI[KI[!],
counts_more_coefs[t[il[jI kI[I],
24, updateFactor)

78 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

where small_token_tree is defined as:

small_token_tree[6] = {
0, 0, // Unused
-ZERO_TOKEN, 4,
-ONE_TOKEN, -TWO_TOKEN

}

8.4.4 Non coefficient probability adaption process
This process is triggered when the function adapt_noncoef_probs is called from the refresh probs syntax table.

The probabilities are updated as follows:

for (i=0;i<IS_INTER_CONTEXTS; i++)

is_inter_prob[i] = adapt_prob(is_inter_prob[i], counts_is_inter[i])
for (i=0;i < COMP_MODE_CONTEXTS; i++)

comp_mode_prob[i] = adapt_prob(comp_mode_prob[i], counts_comp_mode[i])
for (i=0;i < REF_CONTEXTS; i++)

comp_ref_prob[i] = adapt_prob(comp_ref _prob[i], counts_comp_ref[i])
for (i=0;i < REF_CONTEXTS; i++)

for (j=0;j<2;j++)

single_ref prob[i][j]= adapt_prob(single_ref prob[i][j], counts_single ref[i][j])

for (i=0;i <INTER_MODE_CONTEXTS; i++)

adapt_probs(inter_mode_tree, inter_mode_probs[i], counts_inter_mode[i])
for (i=0;i<BLOCK_SIZE_GROUPS; i++)

adapt_probs(intra_mode_tree, y mode_probs[i], counts_intra_mode[i])
for (i=0;i<INTRA_MODES; i++)

adapt_probs(intra_mode_tree, uv_mode_probs[i], counts_uv_mode[i])
for (i=0;i<PARTITION_CONTEXTS; i++)

adapt_probs(partition_tree, partition_probs][i], counts_partition[i])
for (i=0; i< SKIP_CONTEXTS; i++)

skip_prob[i] = adapt_prob(skip_prob[i], counts_skip[i])
if (interpolation_filter == SWITCHABLE) {

for (i=0;i<INTERP_FILTER_CONTEXTS; i++)

adapt_probs(interp_filter_tree, interp_filter_probs[i], counts_interp_filter[i])

}
if (tx_mode == TX_MODE_SELECT) {
for (i=0;i<TX_SIZE_CONTEXTS; i++){
adapt_probs(tx_size 8 _tree, tx_probs[TX_8X8][i], counts_tx_size[TX_8X8][i])
adapt_probs(tx_size 16_tree,tx_probs[TX_16X16][i],counts_tx_size[TX_16X16 1[i])
adapt_probs(tx_size 32_tree,tx_probs[TX_32X32][i],counts_tx_size[TX_32X321][i])
}

}
adapt_probs(mv_joint_tree, mv_joint_probs, counts_mv_joint)
for(i=0;i<2;i++){

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 79

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

mv_sign_prob[i] = adapt_prob(mv_sign_prob[i], counts_mv_sign[i])

adapt_probs(mv_class_tree, mv_class_probs[i], counts_mv_class[i])

mv_class0_bit_prob[i] = adapt_prob(mv_class0_bit_prob[i], counts_mv_classO_bit[i])

for (j = 0; j < MV_OFFSET_BITS; j++)

mv_bits_prob[i][j] = adapt_prob(mv_bits_prob[i][j], counts_mv_bits[i][j])

for (j = 0; j < CLASSO_SIZE; j++)

adapt_probs(mv_fr_tree, mv_classO_fr_probs[i][j], counts_mv_classO_fr[i][j])

adapt_probs(mv_fr_tree, mv_fr_probs[i], counts_mv_fr[i])

if (allow_high_precision_mv) {

mv_class0_hp_prob[i] = adapt_prob(mv_class0_hp_prob[i], counts_mv_classO_hp[i])

mv_hp_prob[i] = adapt_prob(mv_hp_prob[i], counts_mv_hp[i])

}

where adapt_probs is specified as:

adapt_probs(tree, probs, counts) {
merge_probs(tree, 0, probs, counts, COUNT_SAT, MAX_UPDATE_FACTOR)

and adapt_prob is specified as:

adapt_prob(prob, counts) {

return merge_prob(prob, counts[0], counts[1], COUNT_SAT, MAX_UPDATE_FACTOR)

}

8.5 Prediction processes

The following sections define the processes used for predicting the sample values.

These processes are triggered at points defined by function calls to predict_intra and predict_inter in the
residual syntax table described in section 6.4.21.

8.5.1 Intra prediction process

The intra prediction process is invoked for intra coded blocks to predict a part of the block corresponding to a
transform block. When the transform size is smaller than the block size, this process can be invoked multiple
times within a single block for the same plane, and the invocations are in raster order within the block.

The inputs to this process are:

the already reconstructed samples in the current frame CurrFrame,
a variable plane specifying which plane is being predicted,

variables x and y specifying the location of the top left sample in the CurrFrame[plane] array of the
current transform block,

a variable haveleft that is equal to 1 if there are valid samples to the left of this transform block,
a variable haveAbove that is equal to 1 if there are valid samples above this transform block,

a variable notOnRight that is equal to 1 if the transform block is not on the right edge of the block,
a variable txSz, specifying the size of the transform block,

a variable blockldx, specifying how much of the block has already been predicted in units of 4x4 samples.

The outputs of this process are intra predicted samples in the current frame CurrFrame.

80

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The variable mode is specified by:

- If plane is greater than 0, mode is set equal to uv_mode.

- Otherwise, if MiSize is greater than or equal to BLOCK_8X8, mode is set equal to y_mode.
- Otherwise, mode is set equal to sub_modes] blockldx].

The variable log2Size specifying the base 2 logarithm of the width of the transform block is set equal to txSz +
2.

The variable size is set equal to 1 << log2Size.

The variable maxX is set equal to (MiCols * 8) - 1.

The variable maxyY is set equal to (MiRows * 8) - 1.

If plane is greater than 0, then:

- maxX is set equal to ((MiCols * 8) >> subsampling_x) - 1.

- maxyY is set equal to ((MiRows * 8) >> subsampling_y) - 1.

The array aboveRowf[i] for i = 0..size-1 is specified by:

- If haveAbove is equal to 0, aboveRow][i] is set equal to (1<<(BitDepth-1)) - 1.

- Otherwise, aboveRow[i] is set equal to CurrFrame][plane][y-1][Min(maxX, x+i)].
The array aboveRow[i] for i = size..2*size-1 is specified by:

- If haveAbove is equal to 1 and notOnRight is equal to 1 and txSz is equal to 0, aboveRow[i] is set equal
to CurrFrame[plane][y-1][Min(maxX, x+i)].

- Otherwise, aboveRow][i] is set equal to aboveRow][size-1].
The array aboveRowf[i] for i = -1 is specified by:

- If haveAbove is equal to 1 and havelLeft is equal to 1, aboveRow[-1] is set equal to
CurrFrame[plane][y-1][Min(maxX, x-1)].

- Otherwise if haveAbove is equal to 1, aboveRow][-1] is set equal to (1<<(BitDepth-1)) + 1.

- Otherwise, aboveRow][-1] is set equal to (1<<(BitDepth-1)) - 1.

The array leftCol[i] for i = 0..size-1 is specified by:

- If haveleft is equal to 1, leftCol[i] is set equal to CurrFrame[plane][Min(maxY, y+i)][x-1 1.
- Otherwise, leftCol[i] is set equal to (1<<(BitDepth-1)) + 1.

A 2D array named pred containing the intra predicted samples is constructed as follows:

- If mode is equal to V_PRED, pred[i][j] is set equal to aboveRow][j] with j = 0..size-1 and i = 0..size-1
(each row of the block is filled with a copy of aboveRow).

- Otherwise if mode is equal to H_PRED, pred[i][] is set equal to leftCol[i] with j = 0..size-1 and i =
0..size-1 (each column of the block is filled with a copy of leftCol).

- Otherwise if mode is equal to D207_PRED, the following applies:
1. pred[size - 1][j] = leftCol[size - 1] for j = 0..size-1
2. pred[i][0]=Round2(leftCol[i] + leftCol[i+ 1], 1) fori=0..size-2
3. pred[i][1]=Round2(leftCol[i]+ 2 *leftCol[i+ 1]+ leftCol[i+ 2], 2)fori=0..size-3
4. pred[size -2][1]=Round2(leftCol[size - 2] + 3 * leftCol[size - 1], 2)
5. pred[i][j]=pred[i+ 1][j-2]fori= (size-2)..0, for j = 2..size-1

NOTE - In the last step i iterates in reverse order.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 81

82

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Otherwise if mode is equal to D45_PRED, pred[i][j] is set equal to (i + j + 2 < size * 2) ?
Round2(aboveRow[i +j] + aboveRow[i+j+ 1]* 2+ aboveRow[i+j+2],2):aboveRow[2 * size - 1]
for i = 0..size-1, for j = 0..size-1.

Otherwise if mode is equal to D63_PRED, pred[i][j]is set equal to (i & 1) ? Round2(aboveRow[i/2 + j]
+ aboveRow[i/2 +j+ 1]* 2+ aboveRow[i/2 +j+ 2], 2): Round2(aboveRow][i/2 + j] + aboveRow[i/2 +
j+11,1)fori=0..size-1, forj = 0..size-1.

Otherwise if mode is equal to D117_PRED, the following applies:

pred[0][j] = Round2(aboveRow][j - 1]+ aboveRow][j], 1) forj = 0..size-1

pred[1][0] = Round2(leftCol[0] + 2 * aboveRow[-1] + aboveRow[0], 2)

pred[1][j]= Round2(aboveRow[j-2]+ 2 * aboveRow][j- 1]+ aboveRow][j], 2) forj = 1..size-1
pred[2][0] = Round2(aboveRow[-1]+ 2 * leftCol[0] + leftCol[1], 2)

pred[i][0] = Round2(leftCol[i-3]+ 2 *leftCol[i-2] + leftCol[i-1], 2) fori = 3..size-1
pred[i][j]1=pred[i-2][j-1]fori=2.size-1, forj=1..size-1

S T o

Otherwise if mode is equal to D135_PRED, the following applies:

1. pred[0][0]=Round2(leftCol[0]+ 2 * aboveRow[-1] + aboveRow[0], 2)

2. pred[0][j]=Round2(aboveRow[j-2]+ 2 * aboveRow[j- 1]+ aboveRow[]], 2)forj=1..size-1
3. pred[1][0]=Round2(aboveRow [-1]+ 2 * leftCol[0] + leftCol[1], 2) for i = 1..size-1

4. pred[i][0]=Round2(leftCol[i-2]+2*leftCol[i-1]+leftCol[i], 2) fori=2..size-1

5. pred[i][j]=pred[i-1][j-1]fori=1.size-1, forj=1..size-1

Otherwise if mode is equal to D153_PRED, the following applies:

pred[0][0] = Round2(leftCol[0] + aboveRow[-11], 1)

pred[i][0]= Round2(leftCol[i - 1] + leftCol[i], 1) fori = 1..size-1

pred[0][1]1= Round2(leftCol[0] + 2 * aboveRow[-1] + aboveRow[0], 2)

pred[1][1]= Round2(aboveRow[-1]+ 2 *leftCol[0] + leftCol[1],2)

pred[i][1]= Round2(leftCol[i-2]+ 2 *leftCol[i- 1]+ leftCol[i], 2) fori= 2..size-1

pred[0][j] = Round2(aboveRow][j- 3]+ 2 * aboveRow[j- 2]+ aboveRow[- 1], 2) forj=2..size-1

N o o bk~ 0w b=

pred[i][j]1=pred[i-1][j-2]fori=1.size-1, forj= 2..size-1
Otherwise if mode is equal to TM_PRED, pred[i][j] is set equal to Clip1(aboveRow[j] + leftCol[i] -
aboveRowl[-1]) for i = 0..size-1, for j = 0..size-1.

Otherwise if mode is equal to DC_PRED and haveleft is equal to 1 and haveAbove is equal to 1,
pred[i][j] is set equal to avg with i = 0..size-1 and j = 0..size-1. The variable avg (the average of the
samples in union of aboveRow and leftCol) is specified as follows:
sum =0
for (k= 0; k < size; k++) {

sum += leftCol[k]

sum += aboveRow[k]
}

avg = (sum + size) >> (log2Size + 1)

Otherwise if mode is equal to DC_PRED and haveleft is equal to 1 and haveAbove is equal to 0,
pred[i][j]is set equal to leftAvg with i = 0..size-1 and j = 0..size-1. The variable leftAvg is specified as
follows:

sum=0

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

for (k =0; k < size; k++) {
sum += leftCol[k]

}
leftAvg = (sum + (1 << (log2Size - 1))) >> log2Size

- Otherwise if mode is equal to DC_PRED and haveleft is equal to 0 and haveAbove is equal to 1,
pred[i][j]is set equal to aboveAvg with i = 0..size-1 and j = 0..size-1. The variable aboveAvg is specified
as follows:

sum =0
for (k =0; k < size; k++) {
sum += aboveRow[k]

}
aboveAvg = (sum + (1 << (log2Size - 1))) >> log2Size

- Otherwise (mode is DC_PRED), pred[i][j] is set equal to 1<<(BitDepth - 1) with i = 0..size-1 and j =
0..size-1.

The current frame is updated as follows:
— CurrFrame[plane][y +i][x +j]is set equal to pred[i][j] fori= 0..size-1 and j = 0..size-1.
8.5.2 Inter prediction process

The inter prediction process is invoked for inter coded blocks. When MiSize is smaller than BLOCK_8X8, the
prediction is done with a granularity of 4x4 samples, otherwise the whole plane is predicted at the same time.

The inputs to this process are:
- avariable plane specifying which plane is being predicted,

- variables x and y specifying the location of the top left sample in the CurrFrame[plane] array of the region
to be predicted,

- variables w and h specifying the width and height of the region to be predicted,

- avariable blockldx, specifying how much of the block has already been predicted in units of 4x4 samples.
The outputs of this process are inter predicted samples in the current frame CurrFrame.

The variable isCompound is set equal to ref_frame[1] > NONE.

The prediction arrays are formed by the following ordered steps:

1. The variable refList is set equal to 0.

2. The motion vector selection process in section 8.5.2.1 is invoked with plane, reflList, blockldx as inputs
and the output being the motion vector mv.

3. The motion vector clamping process in section 8.5.2.2 is invoked with plane, mv as inputs and the output
being the clamped motion vector clampedMv

4. The motion vector scaling process in section 8.5.2.3 is invoked with plane, refList, x, y, clampedMv as
inputs and the output being the initial location startX, startY, and the step sizes stepX, stepY.

5. The block inter prediction process in section 8.5.2.4 is invoked with plane, reflList, startX, startY, stepX,
stepY, w, h as inputs and the output is assigned to the 2D array preds] refList].

6. IfisCompound is equal to 1, then the variable refList is set equal to 1 and steps 2, 3, 4 and 5 are repeated
to form the prediction for the second reference.

The inter predicted samples are then derived as follows:

- IfisCompound is equal to 0, CurrFrame[plane][y +i][x +j]is set equal to preds[0 J[i][j] fori = 0..h-1
and j=0..w-1.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 83

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

- Otherwise, CurrFrame[plane][y +i][x +] is set equal to Round2(preds[O J[i][j]+ preds[11[il[j], 1)
fori=0..h-1andj=0..w-1.

8.5.2.1 Motion vector selection process

The inputs to this process are:

- avariable plane specifying which plane is being predicted,

- avariable refList specifying that we should select the motion vector from BlockMvs| refList],

- avariable blockldx, specifying how much of the block has already been predicted in units of 4x4 samples.

The output of this process is a 2 element array called mv containing the motion vector for this block.

The purpose of this process is to find the motion vector for this block. Motion vectors are specified for each
luma block, but a chroma block may cover more than one luma block due to subsampling. In this case, an
average motion vector is constructed for the chroma block.

The motion vector array mv is derived as follows:

- If plane is equal to 0, or MiSize is greater than or equal to BLOCK_8X8, mv is set equal to
BlockMvsJ refList][blockldx].

- Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 0, mv is set equal to
BlockMvsJ refList][blockldx].

- Otherwise, if subsampling_x is equal to 0 and subsampling_y is equal to 1, mv[comp] is set equal to
round_mv_comp_q2(BlockMvsJ refList][blockldx][comp] + BlockMvs][refList][blockldx + 2][comp 1)
for comp =0..1.

- Otherwise, if subsampling_x is equal to 1 and subsampling_y is equal to 0, mv[comp] is set equal to
round_mv_comp_q2(BlockMvsJ refList][blockldx][comp] + BlockMvs][refList][blockldx + 1][comp 1)
for comp =0..1.

- Otherwise, (subsampling_x is equal to 1 and subsampling_y is equal to 1), mv[comp] is set equal to
round_mv_comp_qg4(BlockMvs[refList][O][comp] + BlockMvs[refList [1][comp] +
BlockMvsJ refList][2][comp] + BlockMvs] refList][3][comp]) for comp = 0..1.

The functions round_mv_comp_g2 and round_mv_comp_q4 perform division with rounding to the nearest
integer and are specified as:

round_mv_comp_q2(value) {
return (value <0 ? value - 1 : value + 1)/ 2

}

round_mv_comp_qg4(value) {
return (value <0 ? value - 2 : value + 2) / 4

}

NOTE — When subsampling_x is equal to 1, and subsampling_y is equal to 0, the chroma motion vector
for the bottom block is computed as an average of the top-right and bottom-left luma motion vectors
because blockldx is equal to 1 for the bottom chroma block.

8.5.2.2 Motion vector clamping process
The inputs to this process are:
- avariable plane specifying which plane is being predicted,

- avariable mv specifying the motion vector to be clamped.

84 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The output of this process is a 2 element array called clampedMv containing the clamped motion vector for
this block.

The purpose of this process is to change the motion vector into the appropriate precision for the current plane
and to clamp motion vectors that go too far off the edge of the frame.

The variables sx and sy are set equal to the subsampling for the current plane as follows:
- If plane is equal to 0, sx is set equal to 0 and sy is set equal to 0.
- Otherwise, sx is set equal to subsampling_x and sy is set equal to subsampling_y.

The output array clampedMv is specified by the following steps:

bh = num_8x8_blocks_high_lookup[MiSize]

mbToTopEdge = -((MiRow * MI_SIZE) * 16) >> sy

mbToBottomEdge = (((MiRows - bh - MiRow) * MI_SIZE) * 16) >> sy

bw = num_8x8 blocks_wide_lookup[MiSize]

mbTolLeftEdge = -((MiCol * MI_SIZE) * 16) >> sx

mbToRightEdge = (((MiCols - bw - MiCol) * MI_SIZE) * 16) >> sx

spelLeft = (INTERP_EXTEND + ((bw * MI_SIZE) >> sx)) << SUBPEL_BITS

spelRight = spelLeft - SUBPEL_SHIFTS

spelTop = (INTERP_EXTEND + ((bh * MI_SIZE) >> sy)) << SUBPEL_BITS

spelBottom = spelTop - SUBPEL_SHIFTS

clampedMv[0] = Clip3(mbToTopEdge - spelTop, mbToBottomEdge + spelBottom,
(2*mv[0])>>sy)

clampedMv[1] = Clip3(mbToLeftEdge - spelLeft, mbToRightEdge + spelRight,
(2*mv[1])>>sx)

NOTE — The clamping is applied before the motion vector is scaled.
8.5.2.3 Motion vector scaling process
The inputs to this process are:

a variable plane specifying which plane is being predicted,

- avariable refList specifying that we should scale to match reference frame ref_frame[refList],

- variables x and y specifying the location of the top left sample in the CurrFrame[plane] array of the region
to be predicted,

- avariable clampedMv specifying the clamped motion vector.

The outputs of this process are the variables startX and startY giving the reference block location in units of
1/16 th of a sample, and variables xStep and yStep giving the step size in units of 1/16 th of a sample.

This process is responsible for computing the sampling locations in the reference frame based on the motion
vector. The sampling locations are also adjusted to compensate for any difference in the size of the reference
frame compared to the current frame.

A variable refldx specifying which reference frame is being used is set equal to
ref_frame_idx[ref_frame[refList] - LAST_FRAME].

It is a requirement of bitstream conformance that all the following conditions are satisfied:
- 2 * FrameWidth >= RefFrameWidth[refldx]
- 2 * FrameHeight >= RefFrameHeight[refldx]

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 85

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

- FrameWidth <= 16 * RefFrameWidth[refldx]
- FrameHeight <= 16 * RefFrameHeight[refldx]

A variable xScale is set equal to (RefFrameWidth[refldx] << REF_SCALE_SHIFT) / FrameWidth.
A variable yScale is set equal to (RefFrameHeight[refldx] << REF_SCALE_SHIFT) / FrameHeight.

(xScale and yScale specify the size of the reference frame relative to the current frame in units where 16 is
equivalent to the reference frame having the same size.)

The variable baseX is set equal to (x * xScale) >> REF_SCALE_SHIFT.
The variable baseY is set equal to (y * yScale) >> REF_SCALE_SHIFT.

(baseX and baseY specify the location of the block in the reference frame if a zero motion vector is used).

The variable lumaX is set equal to (plane > 0) ? x << subsampling_x : x.
The variable lumay is set equal to (plane > 0) ? y << subsampling_y :y.

(lumaX and lumaY specify the location of the block to be predicted in the current frame in units of luma
samples.)

The variable fracX is set equal to ((16 * lumaX * xScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.
The variable fracY is set equal to ((16 * lumaY * yScale) >> REF_SCALE_SHIFT) & SUBPEL_MASK.

The variable dX is set equal to ((clampedMv[1] * xScale) >> REF_SCALE_SHIFT) + fracX.
The variable dY is set equal to ((clampedMv[0] * yScale) >> REF_SCALE_SHIFT) + fracY.

(dX and dY specify a scaled motion vector.)

The output variable stepX is set equal to (16 * xScale) >> REF_SCALE_SHIFT.
The output variable stepY is set equal to (16 * yScale) >> REF_SCALE_SHIFT.
The output variable startX is set equal to (baseX << SUBPEL_BITS) + dX.
The output variable startY is set equal to (baseY << SUBPEL_BITS) + dY.

NOTE — Even for chroma blocks the fractional part of the start position is based on the luma block location
in lumaX and lumay.

8.5.2.4 Block inter prediction process

The inputs to this process are:

a variable plane,
- avariable refList specifying that we should predict from ref_frame[refList],
- variables x and y giving the block location in units of 1/16 th of a sample,

- variables xStep and yStep giving the step size in units of 1/16 th of a sample. (These will be at most equal
to 80 due to the restrictions on scaling between reference frames.)

- variables w and h giving the width and height of the block in units of samples
The output from this process is the 2D array named pred containing inter predicted samples.

A variable refldx specifying which reference frame is being used is set equal to
ref_frame_idx[ref_frame[refList] - LAST_FRAME].

86 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

A variable ref specifying the reference frame contents is set equal to FrameStore[refldx].

The variables subX and subY are set equal to the subsampling for the current plane as follows:
- If plane is equal to 0, subX is set equal to 0 and subY is set equal to 0.

- Otherwise, subX is set equal to subsampling_x and subY is set equal to subsampling_y.
The variable lastX is set equal to ((RefFrameWidth[refldx] + subX) >> subX) - 1.

The variable lastY is set equal to ((RefFrameHeight[refldx] + subY) >> subY) - 1.

(lastX and lastY specify the coordinates of the bottom right sample of the reference plane.)

The variable intermediateHeight specifying the height required for the intermediate array is set equal to (((h -
1) * yStep + 15) >> 4) + 8.

The sub-sample interpolation is effected via two one-dimensional convolutions. First a horizontal filter is used
to build up a temporary array, and then this array is vertically filtered to obtain the final prediction. The
fractional parts of the motion vectors determine the filtering process. If the fractional part is zero, then the
filtering is equivalent to a straight sample copy.

The filtering is applied as follows:
- The array intermediate is specified as follows:
for (r = 0; r < intermediateHeight; r++) {
for(c=0;c<w;c++){
s=0
p=x+xStep *c
for(t=0;t<8; t++)
s += subpel_filters[interp_filter][p & 15][t] * ref[plane] [Clip3(0, lastY, (y>>4)+r-3)]
[Clip3(0, lastX, (p>>4)+1-3)]
intermediate[r][¢] = Clip1(Round2(s, 7))

- The array pred is specified as follows:
for(r=0;r<h;r++){

for(c=0;c<w;c++){
s=0
p=(y&15)+yStep *r
for(t=0;t<8;t++)

s += subpel_filters[interp_filter][p & 15][t] * intermediate[(p >>4) +t][c]

pred[r][c]= Clip1(Round2(s, 7))

where the constant array subpel_filters is specified as:
subpel_filters[4][16][8] ={

{

{0, 0, 0,128, 0, 0, 0O, 0},

{0, 1, -5,126, 8, -3, 1, 0},

{-1, 3,-10,122, 18, -6, 2, 0},

{-1, 4,-13,118, 27, -9, 3, -1},

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 87

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

(-1, 4,-16,112, 37,-11, 4,-1},
{-1, 5,-18, 105, 48,-14, 4, -1},
{-1, 5,-19, 97, 58,-16, 5, -1},
{-1, 6,-19, 88, 68,-18, 5, -1},
{-1, 6,-19, 78, 78,-19, 6, -1},
{-1, 5,-18, 68, 88,-19, 6, -1},
{-1, 5,-16, 58, 97,-19, 5, -1},
(-1, 4,-14, 48,105,-18, 5, -1},
(-1, 4,-11, 37,112, -16, 4, -1},
(-1, 3, -9, 27,118, -13, 4, -1},
{0, 2, -6, 18,122, -10, 3,-1},
{0, 1, -3, 8,126, -5, 1, 0}

3

{

{0, 0, 0,128, 0, 0, 0, O},
{-3,-1,32, 64,38, 1,-3, 0},
{-2,-2,29, 63,41, 2,-3, 0},

(-2, -2, 26, 63,43, 4,-4, 0},
{-2,-3, 24, 62,46, 5, -4, 0},
{-2,-3,21, 60, 49, 7, -4, 0},
{-1,-4,18, 59,51, 9, -4, 0},

{-1, -4, 16, 57, 53, 12, -4, -1},
{-1, -4, 14, 55, 55, 14, -4, -1},
{-1, -4, 12, 53, 57, 16, -4, -1},

{0,-4, 9, 51,59, 18, -4, -1},
{0,-4, 7, 49,60, 21, -3, -2},
{0, -4, 5, 46, 62, 24, -3, -2},
{0,-4, 4, 43,63, 26, -2, -2},
{0,-3, 2, 41,63, 29, -2, -2},
{0,-3, 1, 38, 64,32, -1,-3}

b

{

{0, 0, 0,128, 0, 0, 0,0}

{1, 3, -7,127, 8, -3, 1,0},

(-2, 5,-13,125, 17, -6, 3, -1},
(-3, 7,-17,121, 27,-10, 5, -2},
-4, 9,-20, 115, 37,-13, 6, -2},
{-4, 10, -23, 108, 48,-16, 8, -3},
{-4, 10, -24, 100, 59, -19, 9, -3},
{-4, 11, -24, 90, 70, -21, 10, -4},
{-4, 11, -23, 80, 80, -23, 11, -4},
{-4, 10, -21, 70, 90, -24, 11, -4},
-3, 9,-19, 59, 100, -24, 10, -4},
{-3, 8,-16, 48,108, -23, 10, -4},
(-2, 6,-13, 37,115,-20, 9, -4},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

(-2, 5,-10, 27,121, -17, 7,-3},
{1, 3, -6, 17,125, -13, 5, -2},
{0, 1, -3, 8,127, -7, 3,-1)
|3
{
{0,0,0,128, 0,0,0,0},
{0,0,0,120, 8,0,0,0},
{0,0,0,112, 16,0,0,0},
{0,0,0,104, 24,0,0,0},
{0,0,0, 96, 32,0,0,0},
{0,0,0, 88, 40,0,0,0},
{0,0,0, 80, 48,0,0,0},
{0,0,0, 72, 56,0,0,0},
{0,0,0, 64, 64,0,0,0},
{0,0,0, 56, 72,0,0,0},
{0,0,0, 48, 80,0,0,0},
{0,0,0, 40, 88,0,0,0},
{0,0,0, 32, 96,0,0,0},
{0,0,0, 24,104,0,0,0},
{0,0,0, 16,112,0,0,0},
{0,0,0, 8,120,0,0,0}
}

}

8.6 Reconstruction and dequantization

This section details the process of reconstructing a block of coefficients using dequantization and inverse

transforms.

8.6.1 Dequantization functions

This section defines the functions get_dc_quant and get_ac_quant that are needed by the dequantization

process.

The quantization parameters are derived from lookup tables.
The function dc_q(b) is specified as dc_glookup[(BitDepth-8) >> 1][Clip3(0, 255, b)] where dc_lookup is

defined as follows:

dc_qglookup[3][256]={
{

4, 8, 8, 9, 10, 111, 12, 12, 13, 14, 15, 16,
17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26,
27, 28, 29, 30, 31, 32, 32, 33, 34, 35 36, 37,
38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47,
48, 48, 49, 50, 51, 52, 53, 53, 54, 55 56, 57,
57, 58, 59, 60, 61, 62, 62, 63, 64, 65 66, 66,
67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76,
77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85
87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

89

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121,
123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146,
148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174,
177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208,
211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247,
250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292,
296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344,
349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406,
411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482,
489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590,
602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775,
796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139,
1184, 1232, 1282, 1336

4, 9, 10, 13, 15, 17, 20, 22, 25, 28, 31, 34,
37, 40, 43, 47, 50, 53, 57, 60, 64, 68, 71, 75,
78, 82, 86, 90, 93, 97, 101, 105, 109, 113, 116, 120,

124, 128, 132, 136, 140, 143, 147, 151, 155, 159, 163, 166,
170, 174, 178, 182, 185, 189, 193, 197, 200, 204, 208, 212,
215, 219, 223, 226, 230, 233, 237, 241, 244, 248, 251, 255,
259, 262, 266, 269, 273, 276, 280, 283, 287, 290, 293, 297,
300, 304, 307, 310, 314, 317, 321, 324, 327, 331, 334, 337,
343, 350, 356, 362, 369, 375, 381, 387, 394, 400, 406, 412,
418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484,
490, 499, 507, 516, 525, 533, 542, 550, 559, 567, 576, 584,
592, 601, 609, 617, 625, 634, 644, 655, 666, 676, 687, 698,
708, 718, 729, 739, 749, 759, 770, 782, 795, 807, 819, 831,
844, 856, 868, 880, 891, 906, 920, 933, 947, 961, 975, 988,
1001, 1015, 1030, 1045, 1061, 1076, 1090, 1105, 1120, 1137, 1153, 1170
1186, 1202, 1218, 1236, 1253, 1271, 1288, 1306, 1323, 1342, 1361, 1379,
1398, 1416, 1436, 1456, 1476, 1496, 1516, 1537, 1559, 1580, 1601, 1624,
1647, 1670, 1692, 1717, 1741, 1766, 1791, 1817, 1844, 1871, 1900, 1929,
1958, 1990, 2021, 2054, 2088, 2123, 2159, 2197, 2236, 2276, 2319, 2363,
2410, 2458, 2508, 2561, 2616, 2675, 2737, 2802, 2871, 2944, 3020, 3102,
3188, 3280, 3375, 3478, 3586, 3702, 3823, 3953, 4089, 4236, 4394, 4559,
4737, 4929, 5130, 5347

4, 12, 18, 25, 33, 41, 50, 60,
70, 80, 91, 103, 115, 127, 140, 153,
166, 180, 194, 208, 222, 237, 251, 266,
281, 296, 312, 327, 343, 358, 374, 390,
405, 421, 437, 453, 469, 484, 500, 516,
532, 548, 564, 580, 596, 611, 627, 643,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

659,

674,

690,

706,

721,

737, 752, 768,

783,

798,

814,

829,

844,

859, 874, 889,

904,

919,

934,

949,

964,

978, 993, 1008,

1022,

1037,

1051,

1065,

1080,

1094, 1108, 1122,

1136,

1151,

1165,

1179,

1192,

1206, 1220, 1234,

1248,

1261,

1275,

1288,

1302,

1315, 1329, 1342,

1368,

1393,

1419,

1444,

1469,

1494, 1519, 1544,

1569,

1594,

1618,

1643,

1668,

1692, 1717, 1741,

1765,

1789,

1814,

1838,

1862,

1885, 1909, 1933,

1957,

1992,

2027,

2061,

2096,

2130, 2165, 2199,

2233,

2267,

2300,

2334,

2367,

2400, 2434, 2467,

2499,

2532,

2575,

2618,

2661,

2704, 2746, 2788,

2830,

2872,

2913,

2954,

2995,

3036, 3076, 3127,

3177,

3226,

3275,

3324,

3373,

3421, 3469, 3517,

3565,

3621,

3677,

3733,

3788,

3843, 3897, 3951,

4005,

4058,

4119,

4181,

4241,

4301, 4361, 4420,

4479,

4546,

4612,

4677,

4742,

4807, 4871, 4942,

5013,

5083,

5153,

5222,

5291,

5367, 5442, 5517,

5591,

5665,

5745,

5825,

5905,

5984, 6063, 6149

6234,

6319,

6404,

6495,

6587,

6678, 6769, 6867,

6966,

7064,

7163,

7269,

7376,

7483, 7599, 7715,

7832,

7958,

8085,

8214,

8352,

8492, 8635, 8788,

8945,

9104,

9275,

9450,

9639,

9832, 10031, 10245

10465, 10702, 10946, 11210, 11482, 11776, 12081, 12409,
12750, 13118, 13501, 13913, 14343, 14807, 15290, 15812,
16356, 16943, 17575, 18237, 18949, 19718, 20521, 21387

}
}

The function ac_q(b) is specified as ac_glookup[(BitDepth-8) >> 1][Clip3(0, 255, b)] where ac_lookup is
defined as follows:

ac_qlookup[3][256]={
{
4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126,
128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150,
152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185,
188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227,

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 91

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280,
285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347,
353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432,
440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540,
550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676,
689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848,
864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066,
1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343,
1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692,
1725, 1759, 1793, 1828

1

{

4, 9 1, 13, 16, 18, 21, 24, 27, 30, 33, 37,
40, 44, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83,
88, 92, 096, 100, 105, 109, 114, 118, 122, 127, 131, 136,

140, 145, 149, 154, 158, 163, 168, 172, 177, 181, 186, 190,
195, 199, 204, 208, 213, 217, 222, 226, 231, 235, 240, 244,
249, 253, 258, 262, 267, 271, 275, 280, 284, 289, 293, 297,
302, 306, 311, 315, 319, 324, 328, 332, 337, 341, 345, 349,
354, 358, 362, 367, 371, 375, 379, 384, 388, 392, 396, 401,
409, 417, 425, 433, 441, 449, 458, 466, 474, 482, 490, 498,
506, 514, 523, 531, 539, 547, 555, 563, 571, 579, 588, 596,
604, 616, 628, 640, 652, 664, 676, 688, 700, 713, 725, 737,
749, 761, 773, 785, 797, 809, 825, 841, 857, 873, 889, 905,
922, 938, 954, 970, 986, 1002, 1018, 1038, 1058, 1078, 1098, 1118,
1138, 1158, 1178, 1198, 1218, 1242, 1266, 1290, 1314, 1338, 1362, 1386,
1411, 1435, 1463, 1491, 1519, 1547, 1575, 1603, 1631, 1663, 1695, 1727,
1759, 1791, 1823, 1859, 1895, 1931, 1967, 2003, 2039, 2079, 2119, 2159,
2199, 2239, 2283, 2327, 2371, 2415, 2459, 2507, 2555, 2603, 2651, 2703,
2755, 2807, 2859, 2915, 2971, 3027, 3083, 3143, 3203, 3263, 3327, 3391,
3455, 3523, 3591, 3659, 3731, 3803, 3876, 3952, 4028, 4104, 4184, 4264,
4348, 4432, 4516, 4604, 4692, 4784, 4876, 4972, 5068, 5168, 5268, 5372,
5476, 5584, 5692, 5804, 5916, 6032, 6148, 6268, 6388, 6512, 6640, 6768,
6900, 7036, 7172, 7312

4, 13, 19, 27, 35, 44, 54, 64,

75, 87, 99, 112, 126, 139, 154, 168,
183, 199, 214, 230, 247, 263, 280, 297,
314, 331, 349, 366, 384, 402, 420, 438,
456, 475, 493, 511, 530, 548, 567, 586,
604, 623, 642, 660, 679, 698, 716, 735,
753, 772, 791, 809, 828, 846, 865, 884,
902, 920, 939, 957, 976, 994, 1012, 1030,
1049, 1067, 1085, 1103, 1121, 1139, 1157, 1175,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

1193,

1211,

1229,

1246,

1264,

1282,

1299,

1317,

1335,

1352,

1370,

1387,

1405,

1422,

1440,

1457,

1474,

1491,

1509,

1526,

1543,

1560,

1577,

1595,

1627,

1660,

1693,

1725,

1758,

1791,

1824,

1856,

1889,

1922,

1954,

1987,

2020,

2052,

2085,

2118,

2150,

2183,

2216,

2248,

2281,

2313,

2346,

2378,

2411,

2459,

2508,

2556,

2605,

2653,

2701,

2750,

2798,

2847,

2895,

2943,

2992,

3040,

3088,

3137,

3185,

3234,

3298,

3362,

3426,

3491,

3555,

3619,

3684,

3748,

3812,

3876,

3941,

4005,

4069,

4149,

4230,

4310,

4390,

4470,

4550,

4631,

4711,

4791,

4871,

4967,

5064,

5160,

5256,

5352,

5448,

5544,

5641,

5737,

5849,

5961,

6073,

6185,

6297,

6410,

6522,

6650,

6778,

6906,

7034,

7162,

7290,

7435,

7579,

7723,

7867,

8011,

8155,

8315,

8475,

8635,

8795, 8956, 9132, 9308, 9484, 9660, 9836, 10028
10220, 10412, 10604, 10812, 11020, 11228, 11437, 11661,
11885, 12109, 12333, 12573, 12813, 13053, 13309, 13565,
13821, 14093, 14365, 14637, 14925, 15213, 15502, 15806,
16110, 16414, 16734, 17054, 17390, 17726, 18062, 18414,
18766, 19134, 19502, 19886, 20270, 20670, 21070, 21486,
21902, 22334, 22766, 23214, 23662, 24126, 24590, 25070,
25551, 26047, 26559, 27071, 27599, 28143, 28687, 29247

The function get_qgindex() returns the quantizer index for the current block and is specified by the following:
- If seg_feature_active(SEG_LVL_ALT_Q) is equal to 1 the following ordered steps apply:

1. Set the variable data equal to FeatureData[segment_id][SEG_LVL_ALT_Q 1.

2. If segmentation_abs_or_delta_update is equal to 0, set data equal to base_q_idx + data

3. Return Clip3(0, 255, data).

- Otherwise, return base_q_idx.

The function get_dc_quant(plane) returns the quantizer value for the dc coefficient for a particular plane and
is derived as follows:

- If plane is equal to 0, return dc_q(get_qgindex() + delta_q_y_dc).

- Otherwise, return dc_q(get_qindex() + delta_q_uv_dc).

The function get_ac_quant(plane) returns the quantizer value for the ac coefficient for a particular plane and
is derived as follows:

- If plane is equal to O, return ac_q(get_gindex()).

- Otherwise, return ac_q(get_qindex() + delta_qg_uv_ac).

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 93

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

8.6.2 Reconstruct process

The reconstruct process is invoked to perform dequantization, inverse transform and reconstruction. This
process is triggered at a point defined by a function call to reconstruct in the residual syntax table described in
section 6.4.21.

The inputs to this process are:
- avariable plane specifying which plane is being reconstructed,

- variables x and y specifying the location of the top left sample in the CurrFrame[plane] array of the
current transform block,

- avariable xSz, specifying the size of the transform block.

The outputs of this process are reconstructed samples in the current frame CurrFrame.

The reconstruction and dequantization process is defined as follows:

The variable dgDenom is set equal to 2 if txSz is equal to TX_32X32, otherwise dgDenom is set equal to 1.
The variable n (specifying the base 2 logarithm of the width of the transform block) is set equal to 2 + txSz.
The variable n0 (specifying the width of the transform block) is set equal to 1 << n.

The following ordered steps apply:

1. Dequant[i][j]is set equal to (Tokens[i*n0 +] * get_ac_quant(plane))/ dgDenom for i = 0..(n0-1), for
j=0..(n0-1).

2. Dequant[0][0]is setequal to (Tokens[0] * get_dc_quant(plane)) / dgDenom.

3. Invoke the 2D inverse transform block process defined in section 8.7.2 with the variable n as input. The
inverse transform outputs are stored back to the Dequant buffer.

4. CurrFrame[plane][y +i][x +j]is set equal to Clip1(CurrFrame[plane [y +i][x +j] + Dequant[i][j])
fori=0..(n0-1) and j = 0..(n0-1).

It is a requirement of bitstream conformance that the values written into the Dequant array in steps 1 and 2
are representable by a signed integer with 8 + BitDepth bits.

8.7 Inverse transform process

This section details the inverse transforms used during the reconstruction processes detailed in section 8.6.
8.7.1 1D Transforms

8.711 Butterfly functions

This section defines the butterfly functions B, H, SB, SH used by the 1D transform processes.

The inverse transform process works by writing values into an array T. It is a requirement of bitstream
conformance that the values saved into the array T are representable by a signed integer using 8 + BitDepth
bits of precision.

NOTE — The inverse asymmetric discrete sine transforms also make use of an intermediate array named S.
The values in this array require higher precision to avoid overflow. Using signed integers with 24 +
BitDepth bits of precision is enough to avoid overflow.

The function brev(numBits, x) returns the bit-reversal of numBits of x and is specified as follows:

brev(numBits, x) {

t=0
for (i =0;i < numBits; i++) {
bit=(x >>i) & 1

t += bit << (numBits - 1 - i)

94 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

}

return t

}

The function B(a, b, angle, 0) performs a butterfly rotation specified by the following ordered steps:
1. The variable x is set equal to T[a] * cos64(angle) - T[b] * sin64(angle).

2. The variable y is set equal to T[a] * sin64(angle) + T[b] * cos64(angle).

3. T[a]is set equal to Round2(x, 14).

4. T[b]is set equal to Round2(y, 14).

It is a requirement of bitstream conformance that the values saved into the array T by this function are
representable by a signed integer using 8 + BitDepth bits of precision.

The function cos64(angle) is specified for integer values of the input angle by the following ordered steps:
Set a variable angle2 equal to angle & 127.

If angle2 is greater than or equal to 0 and less than or equal to 32, return cos64_lookup[angle2].

1
2

3. Ifangle2 is greater than 32 and less than or equal to 64, return cos64_lookup[64 - angle2] * -1.
4. |If angle2 is greater than 64 and less than or equal to 96, return cos64_lookup[angle2 - 64] * -1.
5

Otherwise (if angle2 is greater than 96 and less than 128), return cos64_lookup[128 - angle2].
Where cos64 _lookup is a constant lookup table defined as:

cos64_lookup[33]={
16384, 16364, 16305, 16207, 16069, 15893, 15679, 15426,
15137, 14811, 14449, 14053, 13623, 13160, 12665, 12140,
11585, 11003, 10394, 9760, 9102, 8423, 7723, 7005,
6270, 5520, 4756, 3981, 3196, 2404, 1606, 804,
0

The function sin64(angle) is defined to be cos64(angle - 32).

NOTE - The cos64 function implements the expression round(16384 * cos(angle * pi / 64)). The sin64
function implements the expression round(16384 * sin(angle * pi /64)).

When the angle is equal to 16 + 32*k for integer k the butterfly rotation can be equivalently performed with two
fewer multiplications (because the magnitude of cos64(16 + 32*k) is always equal to that of sin64(16 + 32%k))
by the following process:

1. The variable v is set equal to (angle & 32) ? T[a]+ T[b]: T[a]-T[b].
2. The variable w is set equal to (angle & 32) ? -T[a]+ T[b]: T[a]+ T[b].
3. The variable x is set equal to v * cos64(angle).

4. The variable y is set equal to w * cos64(angle).

5. T[a]is set equal to Round2(x, 14).

6. T[b]is setequal to Round2(y, 14).

It is a requirement of bitstream conformance that the angle is equal to 16 + 32*k for integer k, the variables v
and w are representable by a signed integer using 8 + BitDepth bits of precision.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 95

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The function B(a ,b, angle, 1) performs a butterfly rotation and flip specified by the following ordered steps:
1. The function B(a, b, angle, 0) is invoked.

2. The contents of T[a]and T[b] are exchanged.

The function H(a, b, 0) performs a Hadamard rotation specified by the following ordered steps:
1. The variable x is set equal to T[a].

2. The variable y is set equal to T[b].

3. T[a]issetequaltox+y.

4. T[b]issetequaltox-y.

It is a requirement of bitstream conformance that the values saved into the array T by this function are
representable by a signed integer using 8 + BitDepth bits of precision.

The function H(a, b, 1) performs a Hadamard rotation with flipped indices and is specified as follows:
1. The function H(b, a, 0) is invoked.

The function SB(a, b, angle, 0) performs a butterfly rotation according to the following ordered steps:
1. S[a]issetequaltoT[a]* cos64(angle)-T[b]*sin64(angle).
2. S[b]issetequalto T[a]* sin64(angle)+ T[b]* cos64(angle).

The function SB(a, b, angle, 1) performs a butterfly rotation and flip according to the following ordered steps:
1. The function SB(a, b, angle, 0) is invoked.

2. The contents of S[a] and S[b] are exchanged.

The function SH(a, b) performs a Hadamard rotation and rounding specified by the following ordered steps:
1. T[a]is setequalto Round2(S[a]+ S[b], 14).
2. T[b]is setequalto Round2(S[a]-S[b], 14).

8.7.1.2 Inverse DCT array permutation process

This process performs an in-place permutation of the array T of length 2" for 2 < n < 5 which is required before
execution of the inverse DCT process.

The input to this process is a variable n that specifies the base 2 logarithm of the length of the input array.
A temporary array named copyT is set equal to T.

T[i]is set equal to copyT[brev(n,i)]fori=0..((1<<n)-1).

8.7.1.3 Inverse DCT process

This process performs an in-place inverse discrete cosine transform of the permuted array T which is of length
2"for2<n<5.

The input to this process is a variable n that specifies the base 2 logarithm of the length of the input array.
The variable n0 is set equal to 1<<n.

The variable n1 is set equal to 1<<(n-1).

96 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The variable n2 is set equal to 1<<(n-2).
The variable n3 is set equal to 1<<(n-3).
The following ordered steps apply:

1. If nis equal to 2, invoke B(0, 1, 16, 1), otherwise recursively invoke the inverse DCT defined in this
section with the variable n set equal ton - 1.

2. Invoke B(n1+i, n0-1-i, 32-brev(5, n1+i), 0) fori = 0..(n2-1).

3. If nis greater than or equal to 3:
a. Invoke H(n1+4%i+2%, n1+1+4*i+2%}, j) fori = 0..(n3-1), j = 0..1.

4. Ifnisequalto5:
a. Invoke B(n0-n+3-n2%j-4%i, n1+n-4+n2*j+4*i, 28-16*i+56*j, 1) fori=0..1,j=0..1.
b. Invoke H(n1+n3*j+i, n1+n2-5+n3*j-i, j&1) fori=0..1,j=0..3.

5. If nis greater than or equal to 4:
a. Invoke B(n0-n+2-i-n2*j, n1+n-3+i+n2%j, 24+48%j, 1) fori = 0..(n==5), j = 0..1.
b. Invoke H(n1+n2*+i, n1+n2-1+n2%-i, j&1) fori = 0..(2n-7), j = 0..1.

6. If nis greater than or equal to 3:
a. Invoke B(n0-n3-1-i, n1+n3+i, 16, 1) fori = 0..(n3-1).

7. Invoke H(i, n0-1-i, 0) fori=0..(n1-1).

8.7.1.4 Inverse ADST input array permutation process

This process performs the in-place permutation of the array T of length 2" which is required as the first step of
the inverse ADST.

The input to this process is a variable n that specifies the base 2 logarithm of the length of the input array.
The variable n0 is set equal to 1<<n.

The variable n1 is set equal to 1<<(n-1).

A temporary array named copyT is set equal to T.

The values at even locations T[2 * i] are set equal to copyT[n0 -1 -2 *i]fori=0..(n1-1).

The values at odd locations T[2 *i + 1] are set equal to copyT[2 *i] fori=0..(n1-1).

8.7.1.5 Inverse ADST output array permutation process

This process performs the in-place permutation of the array T of length 2" which is required before the final
step of the inverse ADST.

The input to this process is a variable n that specifies the base 2 logarithm of the length of the input array.
A temporary array named copyT is set equal to T.
The permutation depends on n as follows:

- Ifnisequalto 4, T[8*a + 4*b + 2*c + d] is set equal to copyT[8*(d”*c) + 4*(c”b) + 2*(b*a) + a]fora =0..1
andb=0..1andc=0..1andd =0..1.

- Otherwise (n is equal to 3), T[4*a + 2*b + c] is set equal to copyT[4*(c"b) + 2*(b*a) + a] fora = 0..1 and
b=0..1andc=0..1.

8.7.1.6 Inverse ADST4 process
This process does an in-place transform of the array T to perform an inverse ADST.

The following ordered steps apply:
sO=SINPI_.1 9*T[0]

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 97

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

s1=SINPI_2 9*T[0]
s2=SINPI_3 9*T[1]
s3=SINPI_4 9*T[2]
s4=SINPI_1 9*T[2]
s5=SINPI_2 9*T[3]
s6 =SINPI_4 9*T[3]
v=T[0]-T[2]+T[3]
s7 =SINPI_3 9*v
x0=s0+s3 +s5
x1=s1-s4-s6

X2 = s7

x3 =s2

s0 =x0 + x3
s1=x1+x3

s2 = x2

s3=x0 +x1-x3
T[0]=Round2(s0, 14
T[1]1=Round2(s1, 14
T[2]=Round2(s2, 14
T[3]=Round2(s3, 14

~ [~ |~ |~

It is a requirement of bitstream conformance that the values saved into the variable v and into the array T by
this function are representable by a signed integer using 8 + BitDepth bits of precision.

The constants used in this function are defined as:

Name of constant Value of constant
SINPI_1_9 5283
SINPI_2_9 9929
SINPI_3 9 13377
SINPI_4 9 15212

8.7.1.7 Inverse ADSTS8 process

This process does an in-place transform of the array T using a higher precision array S for intermediate
results. The following ordered steps apply:

1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
equal to 3.

Invoke SB(2*i, 1+2%i, 30-8*i, 1) fori=0..3.
Invoke SH(i, 4+i) fori=0..3.

Invoke SB(4+3%i, 5+i, 24-16%i, 1) fori = 0..1.
Invoke SH(4+i, 6+i) fori=0..1.

Invoke H(i, 2+i, 0) fori=0..1.

Invoke B(2+4*i, 3+4*i, 16, 1) fori=0..1.

S L A

98 Convriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

8. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n
set equal to 3.

9. SetT[1+2*i] equal to -T[1+2*i] fori = 0..3.
8.7.1.8 Inverse ADST16 process

This process does an in-place transform of the array T using a higher precision array S for intermediate
results. The following ordered steps apply:

1. Invoke the ADST input array permutation process specified in section 8.7.1.4 with the input variable n set
equal to 4.

2. Invoke SB(2%, 1+2*i, 31-4*i,1) fori = 0..7.

3. Invoke SH(i, 8+i)fori=0..7.

4. Invoke SB(8+2%, 9+2%i, 28-16*i, 1) fori=0..3.

5. Invoke SH(8+i, 12+i) fori=0..3.

6. Invoke H(i, 4+i, 0)fori=0..3.

7. Invoke SB(4+8*i+3%j, 5+8%i+j, 24-16%j, 1) fori = 0..1, forj = 0..1.

8. Invoke SH(4+8%j+i, 6+8%j+i)fori=0..1,j=0..1.

9. Invoke H(8*j+i, 2+8%j+i,0) fori=0..1, forj=0..1.

10. Invoke B(2+4*j+8%i, 3+4*j+8%i, 48+64*(i*j), 0) fori = 0..1, for j = 0..1.

11. Invoke the ADST output array permutation process specified in section 8.7.1.5 with the input variable n

set equal to 4.
12. Set T[1+12*j+2*i] equal to -T[1+12*j+2*i] for i = 0..1, forj = 0..1.
8.7.1.9 Inverse ADST process
This process performs an in-place inverse ADST process on the array T of size 2" for2 <n < 4.
The input to this process is a variable n that specifies the base 2 logarithm of the length of the input array.
The process to invoke depends on n as follows:
- Ifnis equal to 2, invoke the Inverse ADST4 process specified in section 8.7.1.6.
- Otherwise if n is equal to 3, invoke the Inverse ADST8 process specified in section 8.7.1.7.
- Otherwise (n is equal to 4), invoke the Inverse ADST16 process specified in section 8.7.1.8.
8.7.1.10 Inverse Walsh-Hadamard transform process
The input to this process is a variable shift that specifies the amount of pre-scaling.

This process does an in-place transform of the array T (of length 4) by the following ordered steps:

a=T[0]>> shift
c =T[1]>> shift
d =T[2] >> shift
b =T[3] >> shift

a+=c

d-=b
e=(a-d)>>1
b=e-b
c=e-c
a-=b

d+=c

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 99

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

T[0]=a
T[1]1=D
T[2]=c
T[3]=d

8.7.2 2D Inverse Transform

This process performs a 2D inverse transform for an array of size 2" by 2" stored in the 2D array Dequant.

The input to this process is a variable n that specifies the base 2 logarithm of the width of the transform.

Set the variable n0 equal to 1 << n.

The row transforms with i = 0..(n0-1) are applied as follows:

Set T[j] equal to Dequant[i][] forj = 0..(n0-1).

If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
to 2.

Otherwise, if TxType is equal to DCT_DCT or TxType is equal to ADST_DCT, apply an inverse DCT as
follows:

1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.

Otherwise (TxType is equal to DCT_ADST or TxType is equal to ADST_ADST), invoke the inverse ADST
process as specified in section 8.7.1.9 with input variable n.

Set Dequant[i][j]equalto T[] forj = 0..(n0-1).

The column transforms with j = 0..(n0-1) are applied as follows:

Set T[i] equal to Dequant[i][j] fori = 0..(n0-1).

If Lossless is equal to 1, invoke the Inverse WHT process as specified in section 8.7.1.10 with shift equal
to 0.

Otherwise, if TxType is equal to DCT_DCT or TxType is equal to DCT_ADST, apply an inverse DCT as
follows:

1. Invoke the inverse DCT permutation process as specified in section 8.7.1.2 with the input variable n.
2. Invoke the inverse DCT process as specified in section 8.7.1.3 with the input variable n.

Otherwise (TxType is equal to ADST_DCT or TxType is equal to ADST_ADST), invoke the inverse ADST
process as specified in section 8.7.1.9 with input variable n.

If Lossless is equal to 1, set Dequant[i][j] equal to T[i] fori = 0..(n0-1).

Otherwise (Lossless is equal to 0), set Dequant[i][j] equal to Round2(T[i], Min(6, n+ 2)) fori =
0..(n0-1).

8.8 Loop filter process

Input to this process is the array CurrFrame of reconstructed samples.

Output from this process is a modified array CurrFrame containing deblocked samples.

The purpose of the loop filter is to eliminate (or at least reduce) visually objectionable artifacts associated with
the semi-independence of the coding of super blocks and their constituent sub-blocks.

First the loop filter frame init process specified in section 8.8.1 is invoked.

Then, the loop filter is applied on a raster scan order of superblocks as follows:

100 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

for (row = 0; row < MiRows; row += 8)
for (col = 0; col < MiCols; col +=8)
for (plane = 0; plane < 3; plane++)
for (pass = 0; pass < 2; pass++)
The superblock loop filter process specified in 8.8.2 is invoked with the variables plane,
pass, row, and col as inputs.

NOTE — The loop filter is an integral part of the decoding process, in that the results of loop filtering are
used in the prediction of subsequent frames.

NOTE - Because many samples will be filtered more than once, the order in which edges are processed
given above needs to be respected by any implementation. Within a single edge, the samples can be
filtered in parallel.

NOTE - The loop filter applies after the macroblocks have been "reconstructed” (i.e., had their prediction
summed with their residual); correct decoding is predicated on the fact that already-constructed portions of
the current frame referenced via intra prediction are not yet filtered.

8.8.1 Loop filter frame init process

The output of this process is the table LviLookup.

This process is invoked once per frame to prepare a filter strength lookup table.

The variable nShift is set equal to loop_filter_level >> 5.

The following ordered steps apply for segment_id = 0..MAX_SEGMENTS-1:

1. IvISeg is set equal to loop_filter_level.

2. |If seg_feature_active(SEG_LVL_ALT L) is equal to 1 the following ordered steps apply:

a. If segmentation_abs_or_delta_update is equal to 1, IvISeg is set equal to FeatureData[segment_id][
SEG_LVL ALT_L].

b. If segmentation_abs_or_delta_update is equal to 0, IviSeg is set equal to FeatureData[segment_id][
SEG_LVL _ALT_L]+ loop_filter_level.

c. IviSeg is set equal to Clip3(0, MAX_LOOP_FILTER, IvISeg).

3. If loop_filter_delta_update is equal to O, then LviLookup[segment_id][ref][mode] is set equal to IviSeg
for ref = INTRA_FRAME..MAX_REF_FRAMES-1 and for mode = 0..MAX_MODE_LF _ DELTAS-1.

4. |If loop_filter_delta_enabled is equal to 1, then the following applies:

intraLvl = IvISeg + (loop_filter_ref_deltas[INTRA_FRAME] << nShift)
LviLookup[segment_id][INTRA_FRAME][0] = Clip3(0, MAX_LOOP_FILTER, intraLvl)
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ref++) {

for (mode = 0; mode < MAX_MODE_LF_DELTAS; mode++) {

interLvl = IvISeg + (loop_filter_ref_deltas[ref] << nShift)
+ (loop_filter_mode_deltas[mode] << nShift)
LviLookup[segment_id][ref][mode] = Clip3(0, MAX_LOOP_FILTER, interLvl)

8.8.2 Superblock loop filter process
The inputs to this process are:
- avariable plane specifying whether we are filtering Y, U, or V samples,

- avariable pass specifying the direction of the edges. pass equal to 0 means we are filtering vertical block
boundaries, and pass equal to 1 means we are filtering horizontal block boundaries,

- variables row and col specifying the location of the superblock in units of 8x8 blocks.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 101

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The outputs of this process are modified values in the array CurrFrame.

The variables subX and subY describing the subsampling of the current plane are derived as follows:
- If plane is equal to 0, subX and subY are set equal to 0.

- Otherwise (plane is not equal to 0), subX is set equal to subsampling_x and subY is set equal to
subsampling_y.

The variables dx, dy, sub, and edgeLen are derived as follows:

- If passis equal to 0, then dx is set equal to 1, dy is set equal to 0, sub is set equal to subX, edgelLen is set
equal to 64 >> subY.

- Otherwise (pass is equal to 1), dy is set equal to 1, dx is set equal to 0, sub is set equal to subY, edgelLen
is set equal to 64 >> subX.

dx and dy specify the offset between the samples to be filtered.
sub is the subsampling factor in the direction of the filter (i.e. perpendicular to the boundary being filtered).

edgelen is the length of the boundary in samples (64 for luma, but fewer for chroma when subsampling is
being used).

For the variable edge taking values between 0 and (16 >> sub) - 1 (in increasing order) and i taking values
from O to edgelLen - 1, the following ordered steps apply:

1. The variables x and y (containing the location in luma coordinates) are derived as follows:

- If passis equal to O, x is set equal to col * 8 + edge * (4 << subX), and y is set equal to row * 8 + (i <<
subY).

- Otherwise (pass is equal to 1), x is set equal to col * 8 + (i << subX), and y is set equal to row * 8 +
edge * (4 << subY).

2. Set the variable loopCol equal to ((x >> 3) >> subX) << subX.

w

Set the variable loopRow equal to ((y >> 3) >> subY) << subY. (loopRow and loopCol specify the luma
location in units of 8x8 blocks.)

Set the variable MiSize equal to MiSizes[loopRow][loopCol].
Set the variable tx_size equal to TxSizes[loopRow][loopCol].

Set the variable txSz equal to (plane > 0) ? get_uv_tx_size() : tx_size.

N o o &

The variable sbSize is derived as follows:

- If subis equal to 0, set sbSize equal to MiSize.

- Otherwise (sub is equal to 1), set sbSize equal to Max(BLOCK_16X16, MiSize).

Set the variable skip equal to Skips[loopRow][loopCol].

Set the variable isIntra equal to RefFrames[loopRow][loopCol][0] <= INTRA_FRAME.

10. The variable isBlockEdge (equal to 1 if the samples cross a prediction block edge) is derived as follows:

- |If pass is equal to 0 and x is an exact multiple of 8*num_8x8 blocks wide lookup[sbSize],
isBlockEdge is set equal to 1.

- Otherwise, if pass is equal to 1 and y is an exact multiple of 8*num_8x8_ blocks_high_lookup[sbSize],
isBlockEdge is set equal to 1.

- Otherwise, isBlockEdge is set equal to 0.

11. The variable isTxEdge (equal to 1 if the samples cross a transform block edge) is derived as follows:

102 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

12.

13.

14.

15.

16.

17.

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

- If passis equal to 1 and subX is equal to 1 and MiCols is odd and edge is odd and (x + 8) >= MiCols *
8, isTxEdge is set equal to 0. (This corresponds to a case when the horizontal boundary of a chroma
block crosses the right hand edge of the image.)

- Otherwise, if edge is an exact multiple of 1 << txSz, isTxEdge is set equal to 1.

- Otherwise, isTxEdge is set equal to 0.

The variable is32Edge (equal to 1 if the samples cross a 32 sample boundary) is derived as follows:
- If edge is an exact multiple of 8, is32Edge is set equal to 1.

- Otherwise, is32Edge is set equal to 0.

The variable onScreen (equal to 1 if the samples on both sides of the boundary lie in the visible area) is
derived as follows:

- If x is greater than or equal to 8 * MiCols, onScreen is set equal to 0.

- Otherwise, if y is greater than or equal to 8 * MiRows, onScreen is set equal to 0.

- Otherwise, if pass is equal to 0 and x is equal to 0, onScreen is set equal to 0.

- Otherwise, if pass is equal to 1 and y is equal to 0, onScreen is set equal to 0.

- Otherwise, onScreen is set equal to 1.

The variable applyFilter (equal to 1 if the samples should be filtered) is derived as follows:
- IfonScreen is equal to 0, applyFilter is set equal to 0.

- Otherwise, if isBlockEdge is equal to 1, applyFilter is set equal to 1.

- Otherwise, if isTxEdge is equal to 1 and isIntra is equal to 1, applyFilter is set equal to 1.
- Otherwise, if isTxEdge is equal to 1 and skip is equal to 0, applyFilter is set equal to 1.
- Otherwise applyFilter is set equal to 0.

The filter size process specified in 8.8.3 is invoked with the inputs txSz, is32Edge, pass, X, y, subX, and
subY and the output assigned to the variable filterSize (containing the maximum filter size that can be
used).

The adaptive filter strength process specified in 8.8.4 is invoked with the inputs loopRow and loopCol, and
the output assigned to the variables Ivl, limit, blimit, and thresh.

If applyFilter is equal to 1 and Ivl is greater than zero, the sample filtering process specified in 8.8.5 is
invoked with the input variable x set equal to x >> subX, the input variable y set equal to y >> subY, and
the variables plane, limit, blimit, thresh, plane, dx, dy, filterSize.

8.8.3 Filter size process

The inputs to this process are:

a variable txSz specifying the size of the transform block,

a variable is32Edge that is equal to 1 if the boundary is at a multiple of 32 samples,
a variable pass specifying the direction of the edges,

variables x and y specifying the location in luma coordinates,

variables subX and subY describing the subsampling of the current plane.

The output of this process is the variable filterSize containing the maximum filter size that can be used.

The purpose of this process is to reduce the width of the chroma filters if the filter would cross the frame
boundary. In addition, the filter size is clipped to a minimum size of TX_8X8 for boundaries on a multiple of 32
samples.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 103

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The variable baseSize is derived as follows:
- IftxSzis equal to TX_4X4 and is32Edge is equal to 1, baseSize is set equal to TX_8X8.
- Otherwise, baseSize is set equal to Min(TX_16X16, txSz).

The output variable filterSize is derived as follows:

- If all of the following conditions are true, filterSize is set equal to TX_8X8:
1. pass is equal to 0 (indicating we are filtering vertical boundaries),
2. subXis equal to 1,
3. baseSize is equal to TX_16X16,
4. x>>3is equal to MiCols - 1.

- Otherwise, if all of the following conditions are true, filterSize is set equal to TX_8X8:
1. pass is equal to 1 (indicating we are filtering horizontal boundaries),
2. subYis equalto 1,
3. baseSize is equal to TX_16X16,
4. y>>3isequal to MiRows - 1.

- Otherwise, filterSize is set equal to baseSize.

8.8.4 Adaptive filter strength process

The inputs to this process are the variables loopRow and loopCol specifying the luma location in units of 8x8
blocks.

The outputs of this process are the variables Ivl, limit, blimit, and thresh.

The output variable Ivl is derived as follows:

- The variable segment is set equal to Segmentlds[loopRow][loopCol].

- The variable ref is set equal to RefFrames[loopRow][loopCol][0].

- The variable mode is set equal to YModes[loopRow][loopCol].

- The variable modeType is derived as follows:
1. If mode is equal to NEARESTMV or NEARMVY or NEWMV, modeType is set equal to 1.
2. Otherwise (if mode is an intra type or ZEROMV), modeType is set equal to 0.

- The variable Ivl is set equal to LvlLookup[segment_id][ref][modeType].

The variable shift is derived as follows:
- Ifloop_filter_sharpness is greater than 4, shift is set equal to 2.
- Otherwise, if loop_filter_sharpness is greater than 0, shift is set equal to 1.

- Otherwise, shift is set equal to 0.

The output variable limit is derived as follows:

- If loop_filter_sharpness is greater than 0, limit is set equal to Clip3(1, 9 - loop_filter_sharpness, Ivl >>
shift).

- Otherwise, limit is set equal to Max(1, Ivl >> shift).

104 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

The output variable blimit is set equal to 2 * (Ivl + 2) + limit.

The output variable thresh is set equal to vl >> 4.

8.8.5 Sample filtering process

The inputs to this process are:

- variables x and y specifying the location within CurrFrame[plane],

- avariable plane specifying whether the block is the Y, U or V plane,

- variables limit, blimit, thresh that specify the strength of the filtering operation,

- variables dx and dy specifying the direction perpendicular to the edge being filtered,
- avariable filterSize of specifying the maximum size of filter allowed.

The outputs of this process are modified values in the array CurrFrame.

First the filter mask process specified in section 8.8.5.1 is invoked with the inputs x, y, plane, limit, blimit,
thresh, dx, dy, and filterSize, and the output is assigned to the variables hevMask, filterMask, flatMask, and
flatMask?2.

Then the appropriate filter process is invoked with the inputs X, y, plane, dx, dy as follows:
- IffilterMask is equal to 0, no filter is invoked.

- Otherwise, if filterSize is equal to TX_4X4 or flatMask is equal to 0, the narrow filter process specified in
section 8.8.5.2 is invoked with the additional input variable hevMask.

- Otherwise, if filterSize is equal to TX_8X8 or flatMask2 is equal to 0, the wide filter process specified in
section 8.8.5.3 is invoked with the additional input variable log2Size set to 3.

- Otherwise, the wide filter process specified in section 8.8.5.3 is invoked with the additional input variable
log2Size set to 4.

8.8.5.1 Filter mask process

The inputs to this process are:

- variables x and y specifying the location within CurrFrame[plane],

- avariable plane specifying whether the block is the Y, U or V plane,

- variables limit, blimit, thresh that specify the strength of the filtering operation,

- variables dx and dy specifying the direction perpendicular to the edge being filtered,

- avariable filterSize of specifying the maximum size of filter allowed.

The outputs from this process are the variables:

- hevMask,

- filterMask,

- flatMask, (only used if filterSize >= TX_8X8),

- flatMask2 (only used if filterSize >= TX_16X16).

The values output for these masks depend on the differences between samples on either side of the specified
boundary. These samples are specified as follows:

q0 = CurrFrame[plane][y][x]

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 105

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

g1 = CurrFrame[plane][y+dy][x+dx]

g2 = CurrFrame[plane][y+dy*2][x+dx*2]
g3 = CurrFrame[plane][y+dy*3][x+dx*3]
g4 = CurrFrame[plane][y+dy*4][x+dx*4]
g5 = CurrFrame[plane][y+dy*5][x+dx*5]
q6 = CurrFrame[plane][y+dy*6][x+dx*6]
q7 = CurrFrame[plane][y+dy*7][x+dx*7]
p0 = CurrFrame[plane][y-dy][x-dx]

p1 = CurrFrame][plane][y-dy*2][x-dx*2]
p2 = CurrFrame] plane][y-dy*3][x-dx*3]
p3 = CurrFrame] plane][y-dy*4][x-dx*4]
p4 = CurrFrame] plane][y-dy*5][x-dx*5]
p5 = CurrFrame] plane][y-dy*6][x-dx*6]
p6 = CurrFrame][plane][y-dy*7][x-dx*7]
p7 = CurrFrame] plane][y-dy*8][x-dx*8]

NOTE — Samples g4, g5, 96, q7, p4, p5, p6 and p7 are only used if filterSize is equal to TX_16X16.

The value of hevMask indicates whether the sample has high edge variance. It is calculated as follows:

hevMask = 0

threshBd = thresh << (BitDepth - 8)
hevMask |= (Abs(p1 - p0) > threshBd)
hevMask |= (Abs(q1-q0) > threshBd)

The value of filterMask indicates whether adjacent samples close to the edge (within four samples either side
of the specified boundary) vary by less than the limits given by limit and blimit. It is used to determine if any
filtering should occur and is calculated as follows:

limitBd = limit << (BitDepth - 8)
blimitBd = blimit << (BitDepth - 8)
mask =0

mask |= (Abs(p3 - p2) > limitBd)
mask |= (Abs(p2 - p1) > limitBd)
mask |= (Abs(p1 - p0) > limitBd)
mask |= (Abs(g1 - g0) > limitBd)
mask |= (Abs(g2 - g1) > limitBd)
mask |= (Abs(g3 - g2) > limitBd)
mask |= (Abs(p0-q90)*2+ Abs(p1-q1)/2 > blimitBd)
filterMask = (mask == 0)

The value of flatMask is only required when filterSize >= TX_8X8. It measures whether at least four samples
from each side of the specified boundary are in a flat region. That is whether those samples are at most (1 <<
(BitDepth - 8)) different from the sample on the boundary. It is calculated as follows:

thresholdBd = 1 << (BitDepth - 8)
if (filterSize >= TX_8X8) {
mask =0
mask |= (Abs(p1 - p0) > thresholdBd)

106 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

mask |= (Abs(q1-q0

> thresholdBd

mask |= (Abs(p2 - p0) > thresholdBd
q0
mask |= (Abs(p3 - p0) > thresholdBd

(

(
mask |= (Abs(g2 -

(

(

mask |= (Abs(g3 -

)
)
> thresholdBd)
)
)

q0) > thresholdBd

flatMask = (mask ==

~ [~ |~ |~ |~ |~

The value of flatMask2 is only required when filterSize >= TX_16X16.

It measures whether at least eight

samples from each side of the specified boundary are in a flat region assuming the first four on each side are

(so the full region is flat if flatMask & flatMask2 ==

)- The value of flatMask2 is calculated as follows:

thresholdBd = 1 << (BitDepth - 8)

if (filterSize >= TX_16X16) {

mask =0
mask |= (Abs(p7 - p0) > thresholdBd
mask |= (Abs(q7 - q0) > thresholdBd

mask |= (Abs(p6 -

p0) > thresholdBd

g0) > thresholdBd

mask |= (Abs(p5 -

p0) > thresholdBd

mask |= (Abs(g5 -

g0) > thresholdBd

(

(

(
mask |= (Abs(g6 -

(

(

(

mask |= (Abs(p4 -

p0) > thresholdBd

mask |= (Abs(g4 -

> thresholdBd

~ [~ [~ |~ |~ [~ [~ |~
~— (= == | — [— [— | —

q0

flatMask2 = (mask == 0)

8.8.5.2 Narrow filter process

The inputs to this filter are:

- variables x, y specifying the the location within CurrFrame[plane],

- avariable plane specifying whether the block is the Y, U or V plane,

a variable hevMask specifying whether this is a high edge variance case,

- variables limit, blimit, thresh that specify the strength of the filtering operation,

- variables dx and dy specifying the direction perpendicular to the edge being filtered.

This process modifies up to two samples on each side of the specified boundary depending on the value of

hevMask as follows:

- If hevMask is equal to 0 (i.e. the samples do not have high edge variance), this process modifies two
samples on each side of the specified boundary, using a filter constructed from just the inner two (one
from each side of the specified boundary).

- Otherwise (the samples do have high edge variance), this process only modifies the one value on each
side of the specified boundary, using a filter constructed from four input samples (two from each side of

the specified boundary).

The process subtracts 0x80 << (BitDepth - 8) from the input sample values so that they are in the range -(1 <<
(BitDepth - 1)) to (1 << (BitDepth - 1)) - 1 inclusive. Intermediate values are made to be in this range by the

following function:

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

107

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

filter4_clamp(value) {
return Clip3(-(1 << (BitDepth - 1)), (1 << (BitDepth - 1)) - 1, value)

The process is specified as follows:

q0 = CurrFrame[plane][y][x]

g1 = CurrFrame[plane][y+dy][x+dx]

p0 = CurrFrame[plane][y-dy][x-dx]

p1 = CurrFrame][plane][y-dy*2][x-dx*2]

ps1 = p1 - (0x80 << (BitDepth - 8))

psO = p0 - (0x80 << (BitDepth - 8))

gs0 = g0 - (0x80 << (BitDepth - 8))

gs1=q1 - (0x80 << (BitDepth - 8))

filter = hevMask ? filter4_clamp(ps1-qs1):0

(
filter = filter4_clamp(filter + 3 * (gs0 - ps0))
filter1 = filter4_clamp(filter + 4) >> 3
filter2 = filter4_clamp(filter + 3) >>3

0q0 = filter4_clamp(gsO - filter1) + (0x80 << (BitDepth - 8))
op0 = filter4_clamp(psO + filter2) + (0x80 << (BitDepth - 8))
CurrFrame[plane][y][x]1=0q0
CurrFrame][plane][y-dy][x-dx] = op0
if (ThevMask) {
filter = Round2(filter1, 1)
0q1 = filter4_clamp(gs1 - filter) + (0x80 << (BitDepth - 8))
op1 = filter4_clamp(ps1 + filter) + (0x80 << (BitDepth - 8))
CurrFrame[plane][y+dy][x+dx] = oq1
CurrFrame][plane][y-dy*2][x-dx*2] = op1

8.8.5.3 Wide filter process

The inputs to this filter are:

- variables x, y specifying the the location within CurrFrame[plane],

- avariable plane specifying whether the block is the Y, U or V plane,

- variables dx and dy specifying the direction perpendicular to the edge being filtered,

- avariable log2Size specifying the base 2 logarithm of the number of taps.

This filter is only applied when samples from each side of the boundary are detected to be in a flat region.

The variable n (specifying the number of filter taps on each side of the central sample) is set equal to (1 << (
log2Size - 1)) -1.

This process modifies the samples on each side of the specified boundary by applying a low pass filter as
follows:

for(i=-n;i<n;i+t+){
t = CurrFrame[plane][y+i*dy][x+i*dx]

108 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

for(j=-n;j<=n;j++){
p = Clip3(-(n+1), n, i+j)
t += CurrFrame[plane][y+p*dy][x+p*dx]

}
F[i]=Round2(t, log2Size)

}
for(i=-n;i<n;i++)
CurrFrame[plane][y+i*dy][x+i*dx] = F[i]

where F is an array with indices from -n to n-1 used to store the filtered results.

8.9 Output process

This process is invoked to optionally display a frame.

If show_existing_frame is equal to 1, then the decoder should output a previously decoded frame as follows:

The variable w is set equal to RefFrameWidth[frame_to_show_map_idx].
The variable h is set equal to RefFrameHeight[frame_to_show_map_idx].
The variable subX is set equal to RefSubsamplingX[frame_to_show_map_idx].
The variable subY is set equal to RefSubsamplingY[frame_to_show_map_idx].

The Y plane is w samples across by h samples down and the sample at location x samples across and y
samples down is given by FrameStore[frame_to_show _map_idx [0][y][x]Jwithx=0..w-1andy =0..h
- 1.

The U plane is (w + subX) >> subX samples across by (h + subY) >> subY samples down and the sample
at location X samples across and y samples down is given by
FrameStore[frame_to_show _map_idx][1][y][x] with x = 0..((w + subX) >> subX) - 1 and y = 0..((h +
subY) >> subY) - 1.

The V plane is (w + subX) >> subX samples across by (h + subY) >> subY samples down and the sample
at location X samples across and y samples down is given by
FrameStore[frame_to_show _map_idx][2][x][y] with x = 0..((w + subX) >> subX) - 1 and y = 0..((h +
subY) >> subY) - 1.

The bit depth for each sample is RefBitDepth[frame_to_show_map_idx].

Otherwise, if show_frame is equal to 1, then the decoder should output the current frame as follows:

The variable w is set equal to FrameWidth.
The variable h is set equal to FrameHeight.
The variable subX is set equal to subsampling_x.
The variable subY is set equal to subsampling_y.

The Y plane is w samples across by h samples down and the sample at location x samples across and y
samples down is given by CurrFrame[0 J[y][x Jwithx=0.w-1andy=0..h - 1.

The U plane is (w + subX) >> subX samples across by (h + subY) >> subY samples down and the sample
at location x samples across and y samples down is given by CurrFrame[1][y][x] with x = 0..((w +
subX) >> subX) - 1 and y = 0..((h + subY) >> subY) - 1.

The V plane is (w + subX) >> subX samples across by (h + subY) >> subY samples down and the sample
at location x samples across and y samples down is given by CurrFrame[2][x][y] with x = 0..((w +
subX) >> subX) - 1 and y = 0..((h + subY) >> subY) - 1.

The bit depth for each sample is BitDepth.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 109

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

8.10 Reference frame update process

This process is invoked as the final step in decoding a frame.

The inputs to this process are the samples in the current frame CurrFrame[plane][x][y].

The output from this process is an updated set of reference frames and previous motion vectors.
The following ordered steps apply:

1. For each value of i from 0 to NUM_REF_FRAMES - 1, the following applies if bit i of refresh_frame_flags
is equal to 1 (i.e. if (refresh_frame_flags>>i)&1 is equal to 1):

- RefFrameWidth[i] is set equal to FrameWidth.

- RefFrameHeight[i] is set equal to FrameHeight.

- RefSubsamplingX[i] is set equal to subsampling_x.
- RefSubsamplingY[i]is set equal to subsampling_y.
- RefBitDepth[i] is set equal to BitDepth.

— FrameStore[i][O][y][x] is set equal to CurrFrame[O][y][x] for x = 0..FrameWidth-1, for y
0..FrameHeight-1.

- FrameStore[i][plane][y][x] is set equal to CurrFrame[plane][y][x] for plane = 1..2, for x =
0..((FrameWidth+subsampling_x) >> subsampling_x)-1, for y = 0..((FrameHeight+subsampling_y) >>
subsampling_y)-1.

2. If show_existing_frame is equal to 0, the following applies:

- PrevRefFrames| row][col][list] is set equal to RefFrames| row][col][list] for row = 0..MiRows-1,
for col = 0..MiCols-1, for list = 0..1.

- PrevMvs[row][col][list][comp] is set equal to Mvs[row][col][list][comp] for row = 0..MiRows-1,
for col = 0..MiCols-1, for list = 0..1, for comp = 0..1.

110 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

9 Parsing Process
9.1 Parsing process for f(n)
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to f(n).
The next n bits are read from the bit stream.
This process is specified as follows:

x=0

for (i=0;i<n;it+){

X =2*x+ read_bit()

read_bit() reads the next bit from the bitstream and advances the bitstream pointer by 1. If the bitstream is
provided as a series of bytes, then the first bit is given by the most significant bit of the first byte.

The value for the syntax element is given by x.
9.2 Parsing process for Boolean decoder

Aside from the uncompressed header and the partition sizes, the entire bitstream is entropy coded. The
entropy decoder is referred to as the “Boolean decoder” and the function init_bool(sz), exit_bool(), and
read_bool(p) are used in this Specification to indicate the entropy decoding operation.

9.2.1 Initialization process for Boolean decoder

The input to this process is a variable sz specifying the number of bytes to be read by the Boolean decoder.
This process is invoked when the function init_bool(sz) is called from the syntax structure.

The bitstream shall not contain data that results in this process being called with sz < 1.

NOTE - The bit position will always be byte aligned when init_bool is invoked because the uncompressed
header and the data partitions are always a whole number of bytes long.

The variable BoolValue is read using the f(8) parsing process.
The variable BoolRange is set to 255.
The variable BoolMaxBits is setto 8 * sz - 8.

The Boolean decoding process specified in section 9.2.2 is invoked to read a marker syntax element from the
bitstream. It is a requirement of bitstream conformance that the value read is equal to 0.

9.2.2 Boolean decoding process

The input to this process is a variable p which specifies the probability (in the range 0 to 255) to use during
bool decode.

The output of this process is the variable bool, containing a decoded bool.
This process is invoked when the function read_bool(p) is called from the syntax structure.
A variable split is set to 1 + (((BoolRange - 1) * p) >> 8).
The variables BoolRange, BoolValue, and bool are updated as follows:
- If BoolValue is less than split, the following applies:
- BoolRange = split
- bool=0
- Otherwise (BoolValue is greater than or equal to split), the following applies:

- BoolRange -= split

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 111

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

- BoolValue -= split
- bool=1
While BoolRange is less than 128 the following applies:
- Avariable newBit is derived as:
- If BoolMaxBits > 0, the following ordered steps apply:
1. newBitis read using the f(1) parsing process.
2. BoolMaxBits -= 1

- Otherwise, newBit is set equal to 0. It is a requirement of bitstream conformance that this never
happens.

- BoolRange is doubled.
- BoolValue is modified as follows:
- BoolValue = (BoolValue << 1) + newBit
9.2.3 Exit process for Boolean decoder
This process is invoked when the function exit_bool() is called from the syntax structure.
The padding syntax element is read using the f(BoolMaxBits) parsing process.
It is a requirement of bitstream conformance that padding is equal to 0.

It is a requirement of bitstream conformance that enough padding bits are inserted to ensure that the final
coded byte of a frame is not equal to a superframe marker. A byte b is equal to a superframe marker if and
only if (b & Oxe0) is equal to 0xc0, i.e. if the most significant 3 bits are equal to 0b110.

NOTE - The padding is required to make the bit position byte aligned, and is also used to make sure that
frames do not end with a superframe marker. It is legal for there to be 0 bits of padding if the bitstream is
already byte aligned. Itis also legal for there to be greater than 8 bits of padding.

9.2.4 Parsing process for read_literal
This process is invoked when the function read_literal(n) is invoked.
This process is specified as follows:

x=0

for(i=0;i<n;i++){

x=2*x+read_bool(128)

}
The return value for the function is given by x.
9.3 Parsing process for tree encoded syntax elements
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to T.
The input to this process is the name of a syntax element.
The decoding of a syntax element depends on a tree and a list of probabilities.
Section 9.3.1 specifies how a tree (or value) is chosen for each syntax element.
Section 9.3.2 specifies how the probabilities are chosen for each syntax element.

Section 9.3.3 specifies how the value of the syntax element is decoded based on the chosen tree and
probabilities.

Section 9.3.4 specifies how the counts should be updated based on the value of the syntax element.

When the description in these sections use variables, these variables are taken to have the values defined by
the syntax tables at the point that the syntax element is being decoded.

When this process is invoked the following ordered steps apply:

112 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

1. The tree selection process as specified in section 9.3.1 is invoked with the name of the syntax element.
The next action depends on the return value:

a. Ifthe return value is an integer, then the syntax element is set equal to the integer.

b. If the return value is a tree, then the syntax element is set equal to the return value of the tree
decoding process as specified in section 9.3.3.

2. The syntax element counting process as specified in section 9.3.4 is invoked with the name and value of
the syntax element.

9.3.1 Tree selection process
The input to this process is the name of a syntax element.

The output from this process is either a tree (represented by an array of integers) or a single integer giving the
value of the syntax element (for the cases when the syntax element can be determined without reading any
bits).

The tree is chosen based on the syntax element as follows:

partition: the tree depends on the value of hasRows and hasCols:

- If hasRows is equal to 1 and hasCols is equal to 1, the tree is partition_tree.
- Otherwise, if hasCols is equal to 1, the tree is cols_partition_tree.

- Otherwise, if hasRows is equal to 1, the tree is rows_partition_tree.

- Otherwise, the return value is PARTITION_SPLIT

partition_tree[6] = {
-PARTITION_NONE, 2,
-PARTITION_HORZ, 4,
-PARTITION_VERT, -PARTITION_SPLIT

}

cols_partition_tree[2] = {
-PARTITION_HORZ, -PARTITION_SPLIT

}

rows_partition_tree[2] ={
-PARTITION_VERT, -PARTITION_SPLIT

}

default_intra_mode and default_uv_mode and intra_mode and sub_intra_mode and uv_mode: the tree
is intra_mode_tree:

intra_mode_tree[18] = {
-DC_PRED, 2,
-TM_PRED, 4,
-V_PRED, 6,
8, 12,
-H_PRED, 10,
-D135 PRED, -D117_PRED,
-D45 PRED, 14,
-D63_PRED, 16,

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 113

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

-D153_PRED, -D207_PRED

}

segment_id: the tree is segment_tree:

segment_tree[14] ={

2, 4, 6, 8,10, 12,

0,-1,-2,-3,-4,-5,-6, -7

}

skip and seg_id_predicted and is_inter and comp_mode and comp_ref and single_ref p1 and
single_ref_p2 and mv_sign and mv_bit and mv_class0_bit and more_coefs: the tree is binary_tree:

binary_tree[2] = {

0, -1

}

NOTE - These syntax elements can also be considered as being read directly from the stream using the
read_bool process. They are described using the tree structure because the process for computing the

probability is more complicated than can be easily expressed in the syntax tables.

tx_size: the tree depends on the value of maxTxSize:

If maxTxSize is equal to TX_32X32 the tree is tx_size 32_tree.

Otherwise, if maxTxSize is equal to TX_16X16 the tree is tx_size_16_tree.

Otherwise, the tree is tx_size_8 tree.

tx_size 32 tree[6]={

-TX_4X4, 2,

-TX_8X8, 4,

-TX_16X16, -TX_32X32

}

tx_size_16_tree[4]={

-TX_4X4, 2,

-TX_8X8, -TX_16X16,

}

tx_size 8 tree[2]={

-TX_4X4, -TX_8X8

}

inter_mode: the tree is given by inter_mode_tree:

inter_mode_tree[6] = {

-(ZEROMV - NEARESTMV), 2,

-(NEARESTMYV - NEARESTMV), 4,

-(NEARMV - NEARESTMV), -(NEWMYV - NEARESTMYV)

}

114 Canvriaht © 2016 Gooale.

Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

interp_filter: the tree is given by interp_filter_tree:

31st March 2016

interp_filter_tree[4]={

-EIGHTTAP, 2,

-EIGHTTAP_SMOOTH, -EIGHTTAP_SHARP

}

mv_joint: the tree is given by mv_joint_tree:

mv_joint_tree[6] = {

-MV_JOINT_ZERO, 2,

-MV_JOINT_HNZVZ, 4,

-MV_JOINT_HZVNZ, -MV_JOINT_HNZVNZ

}

mv_class: the tree is given by mv_class_tree:

mv_class_tree[20] = {

-MV_CLASS 0, 2,

-MV_CLASS 1, 4,

6, 8,

-MV_CLASS_2, -MV_CLASS_3,

10, 12,

-MV_CLASS_4, -MV_CLASS_5,

-MV_CLASS_6, 14,

16, 18,

-MV_CLASS_7, -MV_CLASS_8,

-MV_CLASS_9, -MV_CLASS_10,

}
mv_class0_fr and mv_fr: the tree is given by mv_fr_tree:
mv_fr_tree[6]={
-0, 2,
_1) 41
-2,-3
}

mv_class0_hp and mv_hp: the tree depends on the value of UseHp:

- IfUseHp is equal to 1, the tree is binary_tree.
- Otherwise, the return value is 1.

token: the tree is given by token_tree:

token_tree[20] ={

-ZERO_TOKEN, 2,

-ONE_TOKEN, 4,

6, 10,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

115

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

-TWO_TOKEN, 8,

-THREE_TOKEN, -FOUR_TOKEN,

12, 14,

-DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORYZ2,
16, 18,

-DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4,
-DCT_VAL_CATEGORYS5, -DCT_VAL_CATEGORY®6

9.3.2 Probability selection process

The inputs to this process are:

- the name of a syntax element,

- avariable node specifying which probability is requested.

The output of this process is a probability (expressed as an integer value greater than or equal to 1 and less
than or equal to 255, giving the probability that a boolean is equal to 0).

The probabilities depend on the syntax element as follows:

partition: The variable node2 is set as follows:

- If hasRows is equal to 1 and hasCols is equal to 1, node2 is set equal to node.

- Otherwise, if hasCols is equal to 1, node2 is set equal to 1.

- Otherwise, node2 is set equal to 2.

The probability depends on the value of Framelsintra:

- If Framelsintra is equal to O, the probability is given by kf_partition_probs[ctx][node2].
- Otherwise, the probability is given by partition_probs[ctx][node2].

where the variable ctx is computed as follows:

above =0
left=0
bsl = mi_width_log2_lookup[bsize]
boffset = mi_width_log2_lookup[BLOCK_ 64X64] - bsl
for (i =0;i<num8x8; i++) {
above |= AbovePartitionContext[c + i]
left |= LeftPartitionContext[r +i]

}

above = (above & (1 << boffset)) > 0
left = (left & (1 << boffset)) > 0
ctx = bsl * 4 + left * 2 + above

default_intra_mode: the probability is given by kf y _mode_probs[abovemode][leftmode][node] where
abovemode and leftmode are the intra modes used for the blocks immediately above and to the left of this
block and are computed as:
if (MiSize >= BLOCK_8X8) {
abovemode = AvailU ? SubModes[MiRow - 1][MiCol][2]: DC_PRED
leftmode = AvailL ? SubModes[MiRow][MiCol - 1][1]: DC_PRED
}else {

116 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (idy)
abovemode = sub_modes] idx]
else
abovemode = AvailU ? SubModes[MiRow - 1][MiCol][2 + idx] : DC_PRED
if (idx)
leftmode = sub_modes[idy * 2]
else
leftmode = AvailL ? SubModes[MiRow][MiCol -1][1 +idy *2]: DC_PRED
}
}

NOTE — We are using a 2D array to store the SubModes for clarity. It is possible to reduce memory
consumption by only storing one intra mode for each 8x8 horizontal and vertical position, i.e. to use two 1D

arrays instead.
default_uv_mode: the probability is given by kf_uv_mode_probs[y_mode][node].

intra_mode: the probability is given by y_mode_probs][ctx][node] where ctx is computed by:

ctx = size_group_lookup[MiSize]

sub_intra_mode: the probability is given by y_mode_probs][ctx][node] where ctx is set equal to 0.
uv_mode: the probability is given by uv_mode_probs[ctx][node] where ctx is set equal to y_mode.
segment_id: the probability is given by segmentation_tree_probs[node].

skip: the probability is given by skip_prob[ctx] where ctx is computed by:

ctx=0
if (AvailU)

ctx += Skips[MiRow - 1][MiCol]
if (AvailL)

ctx += Skips[MiRow][MiCol - 1]

seg_id_predicted: the probability is given by segmentation_pred_prob[ctx] where ctx is computed by:

‘ ctx = LeftSegPredContext[MiRow] + AboveSegPredContext[MiCol]

is_inter: the probability is given by is_inter_prob[ctx] where ctx is computed by:

if (AvailU && AvaillL)
ctx = (Leftintra && Abovelntra) ? 3 : Leftintra || Abovelntra
else if (AvailU || AvailL)
ctx =2 * (AvailUu ? Abovelntra : Leftintra)
else
ctx=0

comp_mode: the probability is given by comp_mode_prob[ctx] where ctx is computed by:

if (AvailU && AvaillL) {
if (AboveSingle && LeftSingle)
ctx = (AboveRefFrame[0] == CompFixedRef)

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

117

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

A (LeftRefFrame[0] == CompFixedRef)
else if (AboveSingle)
ctx = 2 + (AboveRefFrame[0] == CompFixedRef || Abovelntra)
else if (LeftSingle)
ctx = 2 + (LeftRefFrame[0] == CompFixedRef || LeftIntra)
else
ctx=4
}else if (AvailU) {
if (AboveSingle)
ctx = AboveRefFrame[0] == CompFixedRef
else
ctx =3
}else if (AvailL) {
if (LeftSingle)
ctx= LeftRefFrame[0] == CompFixedRef
else
ctx =3
}else {
ctx =1

comp_ref: the probability is given by comp_ref_prob[ctx] where ctx is computed by:

FixRefldx = ref_frame_sign_bias[CompFixedRef]
VarRefldx = ! FixRefldx
if (Availu && AvaillL) {
if (Abovelntra && Leftintra) {
ctx =2
} else if (Leftintra) {
if (AboveSingle)
ctx =1+ 2 * (AboveRefFrame[0] = CompVarRef[1])
else
ctx =1 + 2 * (AboveRefFrame[VarRefldx] I= CompVarRef[1])
} else if (Abovelntra) {
if (LeftSingle)
ctx =1+ 2 * (LeftRefFrame[0] I= CompVarRef[1])
else
ctx =1 + 2 * (LeftRefFrame[VarRefldx] I= CompVarRef[11])
}else {
vrfa = AboveSingle ? AboveRefFrame[0] : AboveRefFrame[VarRefldx]
vrfl = LeftSingle ? LeftRefFrame[0] : LeftRefFrame[VarRefldx]
if (vrfa == vrfl && CompVarRef[1] == vrfa) {
ctx =0
} else if (LeftSingle && AboveSingle) {
if ((vrfa == CompFixedRef && vrfl == CompVarRef[0]) ||
(vrfl == CompFixedRef && vrfa == CompVarRef[0]))

118 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

ctx =4
else if (vrfa == vrfl)
ctx =3
else
ctx =1
} else if (LeftSingle || AboveSingle) {
vrfc = LeftSingle ? vrfa : vrfl
rfs = AboveSingle ? vrfa : vrfl
if (vrfc == CompVarRef[1] && rfs I= CompVarRef[1])
ctx =1
else if (rfs == CompVarRef[1] && vrfc |= CompVarRef[1])
ctx =2
else
ctx =4
} else if (vrfa == vrfl) {
ctx =4
}else {
ctx =2
}

}
}else if (AvailU) {

if (Abovelntra) {
ctx =2
}else {
if (AboveSingle)
ctx = 3 * (AboveRefFrame[0] I= CompVarRef[11])
else
ctx = 4 * (AboveRefFrame[VarRefldx] I= CompVarRef[1])

}
}else if (AvailL) {

if (Leftintra) {
ctx =2
}else {
if (LeftSingle)
ctx = 3 * (LeftRefFrame[0] = CompVarRef[1)
else
ctx = 4 * (LeftRefFrame[VarRefldx] I= CompVarRef[1])

}
}else {
ctx =2

single_ref_p1: the probability is given by single_ref prob[ctx][0] where ctx is computed by:

if (Availu && AvaillL) {
if (Abovelntra && Leftintra) {

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 119

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

ctx =2

} else if (Leftintra) {

if (AboveSingle)

ctx = 4 * (AboveRefFrame[0] == LAST_FRAME)

else

ctx =1 + (AboveRefFrame[0] == LAST_FRAME || AboveRefFrame[1] == LAST_FRAME)

} else if (Abovelntra) {

if (LeftSingle)

ctx = 4 * (LeftRefFrame[0] == LAST_FRAME)

else

ctx = 1 + (LeftRefFrame[0] == LAST_FRAME || LeftRefFrame[1] == LAST_FRAME)

}else {

if (AboveSingle && LeftSingle) {

ctx = 2 * (AboveRefFrame[0] == LAST_FRAME) +

2 * (LeftRefFrame[0] == LAST_FRAME)

} else if (!AboveSingle && ILeftSingle) {

ctx = 1 + (AboveRefFrame[0] == LAST_FRAME ||

AboveRefFrame[1] == LAST_FRAME ||

LeftRefFrame[0] == LAST_FRAME ||

LeftRefFrame[1] == LAST_FRAME)

}else {

rfs = AboveSingle ? AboveRefFrame[0] : LeftRefFrame[0]

crf1 = AboveSingle ? LeftRefFrame[0] : AboveRefFrame[0]

crf2 = AboveSingle ? LeftRefFrame[1] : AboveRefFrame[1]

if (rfs == LAST_FRAME)

ctx = 3 + (crfl == LAST_FRAME || crf2 == LAST_FRAME)

else

ctx = crf1 == LAST_FRAME || crf2 == LAST_FRAME

}

}

}else if (AvailU) {

if (Abovelntra) {

ctx =2

}else { //inter

if (AboveSingle)

ctx = 4 * (AboveRefFrame[0] == LAST_FRAME)

else

ctx = 1 + (AboveRefFrame[0] == LAST_FRAME ||

AboveRefFrame[1] == LAST_FRAME)

}

}else if (AvailL) {

if (Leftintra) {

ctx =2

}else {

if (LeftSingle)

120 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

ctx = 4 * (LeftRefFrame[0] == LAST_FRAME)
else
ctx =1 + (LeftRefFrame[0] == LAST_FRAME ||
LeftRefFrame[1] == LAST_FRAME)

}

}else {
ctx =2

}

single_ref_p2: the probability is given by single_ref prob[ctx][1] where ctx is computed by:

if (Availu && AvailL) {
if (Abovelntra && Leftintra) {
ctx=2
} else if (Leftintra) {
if (AboveSingle) {
if (AboveRefFrame[0] == LAST_FRAME)
ctx=3
else
ctx= 4 * (AboveRefFrame[0] == GOLDEN_FRAME)
}else {
ctx=1 + 2 * (AboveRefFrame[0] == GOLDEN_FRAME || AboveRefFrame[1] == GOLDEN_FRAME)
}
} else if (Abovelntra) {
if (LeftSingle) {
if (LeftRefFrame[0] == LAST_FRAME)
ctx=3
else
ctx= 4 * (LeftRefFrame[0] == GOLDEN_FRAME)
}else {
ctx=1 + 2 * (LeftRefFrame[0] == GOLDEN_FRAME || LeftRefFrame[1] == GOLDEN_FRAME)
}
}else {
if (AboveSingle && LeftSingle) {
if (AboveRefFrame[0] == LAST_FRAME && LeftRefFrame[0] == LAST_FRAME) {
ctx=3
} else if (AboveRefFrame[0] == LAST_FRAME) {
ctx= 4 * (LeftRefFrame[0] == GOLDEN_FRAME)
} else if (LeftRefFrame[0] == LAST_FRAME) {
ctx=4 * (AboveRefFrame[0] == GOLDEN_FRAME)
}else {
ctx= 2 * (AboveRefFrame[0] == GOLDEN_FRAME) + 2 * (LeftRefFrame[0] == GOLDEN_FRAME)
}
} else if (1AboveSingle && ILeftSingle) {
if (AboveRefFrame[0] == LeftRefFrame[0] && AboveRefFrame[1] == LeftRefFrame[1])
ctx= 3 * (AboveRefFrame[0] == GOLDEN_FRAME || AboveRefFrame[1] == GOLDEN_FRAME)

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 121

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

else

ctx=2

}else {

rfs = AboveSingle ? AboveRefFrame[0] : LeftRefFrame[0]

crf1 = AboveSingle ? LeftRefFrame[0] : AboveRefFrame[0]

crf2 = AboveSingle ? LeftRefFrame[1] : AboveRefFrame[1]

if (rfs == GOLDEN_FRAME)

ctx= 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME)

else if (rfs == ALTREF_FRAME)

ctx= crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME

else

ctx= 1+ 2 * (crfl == GOLDEN_FRAME || crf2 == GOLDEN_FRAME)

}

}

}else if (AvailU) {

if (Abovelntra || (AboveRefFrame[0] == LAST_FRAME && AboveSingle))

ctx=2

else if (AboveSingle)

ctx=4 * (AboveRefFrame[0] == GOLDEN_FRAME)

else

ctx= 3 * (AboveRefFrame[0] == GOLDEN_FRAME || AboveRefFrame[1] == GOLDEN_FRAME)

}else if (AvailL) {

if (Leftintra || (LeftRefFrame[O] == LAST_FRAME && LeftSingle))

ctx =2

else if (LeftSingle)

ctx = 4 * (LeftRefFrame[0] == GOLDEN_FRAME)

else

ctx = 3 * (LeftRefFrame[0] == GOLDEN_FRAME || LeftRefFrame[1] == GOLDEN_FRAME)

}else {

ctx =2

}

mv_sign: the probability is given by mv_sign_prob[comp].
myv_bit: the probability is given by mv_bits_prob[comp][i].
myv_class0_bit: the probability is given by mv_class0_bit_prob[comp].

tx_size: the probability is given by tx_probs[maxTxSize][ctx][node] where ctx is computed by:

above = maxTxSize

left = maxTxSize

if (Availu && ISkips[MiRow - 1][MiCol])
above = TxSizes[MiRow - 1][MiCol]

if (AvailL && !Skips[MiRow][MiCol - 11])
left = TxSizes[MiRow][MiCol - 1]

if ('AvailL)
left = above

122 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

if (!AvailU)
above = left

ctx = (above+left) > maxTxSize

inter_mode: the probability is given by inter_mode_probs][ctx][node] where ctx is computed by:

‘ ctx = ModeContext[ref frame[0]]

interp_filter: the probability is given by interp_filter_probs[ctx][node] where ctx is computed by:

leftinterp = (AvailL && LeftRefFrame[0] > INTRA_FRAME) ?
InterpFilters[MiRow][MiCol - 1]: 3
abovelnterp = (AvailU && AboveRefFrame[0] > INTRA_FRAME) ?
InterpFilters[MiRow - 1][MiCol] : 3
if (leftinterp == abovelnterp)
ctx = leftinterp
else if (leftinterp == 3 && abovelnterp != 3)
ctx = abovelnterp
else if (leftinterp != 3 && abovelnterp == 3)
ctx = leftinterp
else
ctx=3

mv_joint: the probability is given by mv_joint_probs[node].
mv_class: the probability is given by mv_class_probs[comp].
mv_classO0_fr: the probability is given by mv_class0_fr_probs[comp][mv_class0_bit][node].
mv_class0_hp: the probability is given by mv_class0_hp_prob[comp].
myv_fr: the probability is given by mv_fr_probs[comp][node].
mv_hp: the probability is given by mv_hp_prob[comp].
more_coefs: the probability for more_coefs is given by coef_probs[txSz][plane>0][is_inter][band][ctx][0] where
ctx is computed by:
if(c==0){
sx = plane > 0 ? subsampling_x: 0
sy = plane > 0 ? subsampling_y : 0
maxX = (2 * MiCols) >> sx
maxY = (2 * MiRows) >> sy
numpts = 1 << txSz
x4 = startX >> 2
y4 = startY >> 2
above =0
left=0
for (i=0;i<numpts;i++){
if (x4 +i<maxX)
above |= AboveNonzeroContext[plane][x4 + i]
if (y4 +i<maxY)

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 123

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

left |= LeftNonzeroContext[plane][y4 + i]
}
ctx = above + left
}else {
ctx = (1 + TokenCache[nb[0]] + TokenCache[nb[1]]) >> 1

}

The neighbors of each coefficient are calculated as follows:

if(c==0){
nb[0]=0
nb[1]=0

}else {

n =4 <<txSz
i=pos/n
j=pos % n
if(i>0&&j>0){
a=(i-1)*n+j
a2=i*n+j-1
if (TxType == DCT_ADST){

nb[0]=a
nb[1]=a
}else if (TxType == ADST_DCT) {
nb[0]=a2
nb[1]=a2
}else {
nb[0]=a
nb[1]=a2

}

Yelseif (i>0){
nb[0]=(i-1)*n+]j
nb[1]1=(i-1)"n+j

}else {
nb[0]=i*n+j-1
nb[1]=i*n+j-1

}

}

token: token uses the same derivation for the variable ctx as for the syntax element more_coefs. The
probability for token is given by pareto(node, coef probs[txSz][plane>0][is_inter][band][ctx][Min(2,1+node)]),
where the function pareto is specified as:

pareto(node, prob) {
if (node <2){
return prob

}
X = (prob-1)/2

124 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

if (prob & 1)

return pareto_table[x][node - 2]

else

return (pareto_table[x][node - 2] + pareto_table[x + 1][node-2])>> 1

where the constant lookup table pareto_table is defined in section 10.3.

9.3.3 Tree decoding process

The inputs to this process are:

- atree T that is represented by an array of integers,

- the name of a syntax element.

The output of this process is a decoded value.

The output value is derived as follows:

do {

n=T[n+read_bool(P(n>>1))]

} while (n>0)

The function P(x) is defined to invoke the probability selection process as specified in section 9.3.2 with
inputs of the name of the syntax element and with the input variable node set equal to x.

The output value is then given by -n.

9.3.4 Syntax element counting process

The inputs to this process are:
- the name of a syntax element,

- the value of the syntax element.

We also have access to any variables defined in the probability selection process specified in section 9.3.2
when computing the probabilities used to decode the syntax element.

The action for each syntax element is to either do nothing, or increase the count by 1 for some array elements.

There is one special case (for more_coefs) that is described at the end of this section.

The table below defines which elements are updated for each name.

In this table, the variable syntax is

defined to be equal to the value of the syntax element. If the entry to update is “NA”, then no counting needs
to happen for the corresponding syntax element.

Name of syntax element

Variable to increase by 1

partition counts_partition[ctx][syntax]
default_intra_mode NA
default_uv_mode NA

intra_mode

counts_intra_mode[ctx][syntax]

sub_intra_mode

counts_intra_mode[ctx][syntax]

uv_mode

counts_uv_mode[ctx][syntax]

segment_id

NA

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

125

126

VP9 Bitstream & Decoding Process Specification - v0.6

Skip

counts_skip[ctx][syntax]

seg_id_predicted

NA

is_inter counts_is_inter[ctx][syntax]
comp_mode counts_comp_mode[ctx][syntax]
comp_ref counts_comp_ref[ctx][syntax]

single_ref p1

counts_single_ref[ctx][0][syntax]

single_ref p2

counts_single_ref[ctx][1][syntax]

mv_sign

counts_mv_sign[comp][syntax]

mv_class0_bit

counts_mv_class0_bit[comp][syntax]

mv_bit counts_mv_bits[comp][i][syntax]
tx_size counts_tx_size[maxTxSize][ctx][syntax]
inter_mode counts_inter_mode[ctx][syntax]
interp_filter counts_interp_filter[ctx][syntax]
mv_joint counts_mv_joint[syntax]
mv_class counts_mv_class[comp][syntax]

mv_class0_fr

counts_mv_classO_fr[comp][mv_class0_bit][syntax]

mv_class0_hp

counts_mv_class0_hp[comp][syntax]

mv_fr counts_mv_fr[comp][syntax]

mv_hp counts_mv_hp[comp][syntax]

token counts_token[txSz][plane>0][is_inter][band][ctx][Min(2,syntax)]
more_coefs counts_more_coefs[txSz][plane>0][is_inter][band][ctx][syntax]

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

31st March 2016

VP9 Bitstream & Decoding Process Specification - v0.6

10 Additional tables

31st March 2016

This section contains tables that do not naturally fit in the main sections of the Specification.

10.1 Scan tables

This section defines the scan order for different types of transform.

default_scan_4x4[16] = {

0, 4, 1, 5,

8, 2,12, 9,

3, 6,13,10,

7,14,11,15,

}

col_scan_4x4[16] = {

0, 4, 8, 1,

12, 5, 9, 2,

13, 6, 10, 3,

7,14,11,15,

}

row_scan_4x4[16]={

0, 1, 4, 2,

5, 3, 6, 8,

9, 7,12, 10,

13, 11, 14, 15,

}

default_scan_8x8[64] = {

0, 8 1,16, 9, 2,17, 24,

10, 3,18, 25, 32, 11, 4, 26,

33, 19,40, 12, 34, 27, 5, 41,

20, 48, 13, 35, 42, 28, 21, 6,

49, 56, 36, 43, 29, 7, 14, 50,

57,44, 22, 37, 15, 51, 58, 30,

45, 23, 52, 59, 38, 31, 60, 53,

46, 39, 61, 54, 47, 62, 55, 63,

col_scan_8x8[64]={

0, 8,16, 1,24, 9, 32, 17,

2,40, 25, 10, 33, 18, 48, 3,

26, 41,11, 56, 19, 34, 4, 49,

27,42, 12, 35, 20, 57, 50, 28,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

127

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

5,43, 13, 36, 58, 51, 21, 44,
6,29, 59,37, 14,52, 22, 7,
45, 60, 30, 15, 38, 53, 23, 46,
31, 61, 39, 54, 47, 62, 55, 63,

}

row_scan_8x8[64]={
0, 1, 2, 8,9, 3,16, 10,
4,17,11,24, 5,18, 25, 12,
19, 26, 32, 6, 13, 20, 33, 27,
7, 34,40, 21, 28, 41, 14, 35,
48, 42, 29, 36, 49, 22, 43, 15,
56, 37, 50, 44, 30, 57, 23, 51,
58, 45, 38, 52, 31, 59, 53, 46,
60, 39, 61, 47, 54, 55, 62, 63,

default_scan_16x16[256] = {
0,16, 1,32, 17, 2, 48, 33, 18, 3, 64, 34, 49, 19, 65, 80,
50, 4, 35, 66, 20, 81, 96, 51, 5, 36, 82, 97, 67, 112, 21, 52,
98, 37, 83, 113, 6, 68, 128, 53, 22, 99, 114, 84, 7, 129, 38, 69,
100, 115, 144, 130, 85, 54, 23, 8, 145, 39, 70, 116, 101, 131, 160, 146,
55, 86, 24, 71, 132, 117, 161, 40, 9, 102, 147, 176, 162, 87, 56, 25,
133, 118, 177, 148, 72, 103, 41, 163, 10, 192, 178, 88, 57, 134, 149, 119,
26, 164, 73, 104, 193, 42, 179, 208, 11, 135, 89, 165, 120, 150, 58, 194,
180, 27, 74, 209, 105, 151, 136, 43, 90, 224, 166, 195, 181, 121, 210, 59,
12,152, 106, 167, 196, 75, 137, 225, 211, 240, 182, 122, 91, 28, 197, 13
226, 168, 183, 153, 44, 212, 138, 107, 241, 60, 29, 123, 198, 184, 227, 169,
242,76, 213, 154, 45, 92, 14, 199, 139, 61, 228, 214, 170, 185, 243, 108,
77,155, 30, 15, 200, 229, 124, 215, 244, 93, 46, 186, 171, 201, 109, 140,
230, 62, 216, 245, 31, 125, 78, 156, 231, 47, 187, 202, 217, 94, 246, 141,
63, 232, 172, 110, 247, 157, 79, 218, 203, 126, 233, 188, 248, 95, 173, 142,
219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255

col_scan_16x16[256] = {

0, 16, 32, 48, 1, 64, 17, 80, 33, 96, 49, 2, 65, 112, 18, 81,

34,128, 50, 97, 3, 66, 144, 19, 113, 35, 82, 160, 98, 51, 129, 4,

67, 176, 20, 114, 145, 83, 36, 99, 130, 52, 192, 5, 161, 68, 115, 21,
146, 84, 208, 177, 37, 131, 100, 53, 162, 224, 69, 6, 116, 193, 147, 85,
22,240, 132, 38, 178, 101, 163, 54, 209, 117, 70, 7, 148, 194, 86, 179,
225, 23, 133, 39, 164, 8, 102, 210, 241, 55, 195, 118, 149, 71, 180, 24,

128 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

87, 226, 134, 165, 211, 40, 103, 56, 72, 150, 196, 242, 119, 9, 181, 227,

88, 166, 25, 135, 41, 104, 212, 57, 151, 197, 120, 73, 243, 182, 136, 167,

213, 89, 10, 228, 105, 152, 198, 26, 42, 121, 183, 244, 168, 58, 137, 229,

74,214, 90, 153, 199, 184, 11, 106, 245, 27, 122, 230, 169, 43, 215, 59,

200, 138, 185, 246, 75, 12, 91, 154, 216, 231, 107, 28, 44, 201, 123, 170,

60, 247, 232, 76, 139, 13, 92, 217, 186, 248, 155, 108, 29, 124, 45, 202,

233,171, 61, 14, 77, 140, 15, 249, 93, 30, 187, 156, 218, 46, 109, 125,

62, 172,78, 203, 31, 141, 234, 94, 47, 188, 63, 157, 110, 250, 219, 79,

126, 204, 173, 142, 95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,

159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,

row_scan_16x16[256] = {

0,1,2,16, 3,17, 4, 18, 32, 5, 33, 19, 6, 34, 48, 20,

49,7, 35, 21, 50, 64, 8, 36, 65, 22, 51, 37, 80, 9, 66, 52,

23, 38, 81, 67, 10, 53, 24, 82, 68, 96, 39, 11, 54, 83, 97, 69,

25, 98, 84, 40, 112, 55, 12, 70, 99, 113, 85, 26, 41, 56, 114, 100,

13, 71,128, 86, 27, 115, 101, 129, 42, 57, 72, 116, 14, 87, 130, 102,

144,73, 131, 117, 28, 58, 15, 88, 43, 145, 103, 132, 146, 118, 74, 160

89, 133, 104, 29, 59, 147, 119, 44, 161, 148, 90, 105, 134, 162, 120, 176,

75, 135, 149, 30, 60, 163, 177, 45, 121, 91, 106, 164, 178, 150, 192, 136,

165, 179, 31, 151, 193, 76, 122, 61, 137, 194, 107, 152, 180, 208, 46, 166,

167, 195, 92, 181, 138, 209, 123, 153, 224, 196, 77, 168, 210, 182, 240, 108,

197, 62, 154, 225, 183, 169, 211, 47, 139, 93, 184, 226, 212, 241, 198, 170,

124, 155, 199, 78, 213, 185, 109, 227, 200, 63, 228, 242, 140, 214, 171, 186,

156, 229, 243, 125, 94, 201, 244, 215, 216, 230, 141, 187, 202, 79, 172, 110,

157, 245, 217, 231, 95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,

188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175

190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,

default_scan_32x32[1024] = {

0, 32, 1, 64, 33, 2, 96, 65, 34, 128, 3, 97, 66, 160,

129, 35, 98, 4, 67, 130, 161, 192, 36, 99, 224, 5, 162, 193,

68, 131, 37, 100,

225,194, 256, 163, 69, 132, 6, 226, 257, 288, 195, 101, 164, 38,

258, 7,227, 289, 133, 320, 70, 196, 165, 290, 259, 228, 39, 321,

102, 352, 8, 197,

71, 134, 322, 291, 260, 353, 384, 229, 166, 103, 40, 354, 323, 292,

135, 385, 198, 261, 72, 9, 416, 167, 386, 355, 230, 324, 104, 293,

41,417,199, 136

262, 387, 448, 325, 356, 10, 73, 418, 231, 168, 449, 294, 388, 105,

419, 263, 42, 200, 357, 450, 137, 480, 74, 326, 232, 11, 389, 169,

295, 420, 106, 451,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

129

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

481, 358, 264, 327, 201, 43, 138, 512, 482, 390, 296, 233, 170, 421,
75,452, 359, 12, 513, 265, 483, 328, 107, 202, 514, 544, 422, 391,
453, 139, 44, 234,

484, 297, 360, 171, 76, 515, 545, 266, 329, 454, 13, 423, 203, 108,
546, 485, 576, 298, 235, 140, 361, 330, 172, 547, 45, 455, 267, 577,
486, 77, 204, 362,

608, 14, 299, 578, 109, 236, 487, 609, 331, 141, 579, 46, 15, 173,
610, 363, 78, 205, 16, 110, 237, 611, 142, 47, 174, 79, 206, 17,
111, 238, 48, 143,

80, 175, 112, 207, 49, 18, 239, 81, 113, 19, 50, 82, 114, 51,

83, 115, 640, 516, 392, 268, 144, 20, 672, 641, 548, 517, 424,

393, 300, 269, 176, 145,

52, 21, 704, 673, 642, 580, 549, 518, 456, 425, 394, 332, 301,

270, 208, 177, 146, 84, 53, 22, 736, 705, 674, 643, 612, 581,

550, 519, 488, 457, 426, 395,

364, 333, 302, 271, 240, 209, 178, 147, 116, 85, 54, 23, 737,

706, 675, 613, 582, 551, 489, 458, 427, 365, 334, 303, 241,

210, 179, 117, 86, 55, 738, 707,

614, 583, 490, 459, 366, 335, 242, 211, 118, 87, 739, 615, 491,
367, 243, 119, 768, 644, 520, 396, 272, 148, 24, 800, 769, 676,
645, 552, 521, 428, 397, 304,

273, 180, 149, 56, 25, 832, 801, 770, 708, 677, 646, 584, 553,

522, 460, 429, 398, 336, 305, 274, 212, 181, 150, 88, 57, 26,

864, 833, 802, 771, 740, 709,

678, 647, 616, 585, 554, 523, 492, 461, 430, 399, 368, 337, 306,
275, 244, 213, 182, 151, 120, 89, 58, 27, 865, 834, 803, 741,

710, 679, 617, 586, 555, 493,

462, 431, 369, 338, 307, 245, 214, 183, 121, 90, 59, 866, 835,
742,711,618, 587, 494, 463, 370, 339, 246, 215, 122, 91, 867,
743, 619, 495, 371, 247, 123,

896, 772, 648, 524, 400, 276, 152, 28, 928, 897, 804, 773, 680,
649, 556, 525, 432, 401, 308, 277, 184, 153, 60, 29, 960, 929,

898, 836, 805, 774, 712, 681,

650, 588, 557, 526, 464, 433, 402, 340, 309, 278, 216, 185, 154,
92, 61, 30, 992, 961, 930, 899, 868, 837, 806, 775, 744, 713, 682,
651, 620, 589, 558, 527,

496, 465, 434, 403, 372, 341, 310, 279, 248, 217, 186, 155, 124,
93, 62, 31, 993, 962, 931, 869, 838, 807, 745, 714, 683, 621, 590,
559, 497, 466, 435, 373,

342, 311, 249, 218, 187, 125, 94, 63, 994, 963, 870, 839, 746, 715,
622, 591, 498, 467, 374, 343, 250, 219, 126, 95, 995, 871, 747, 623,
499, 375, 251, 127,

900, 776, 652, 528, 404, 280, 156, 932, 901, 808, 777, 684, 653, 560,
529, 436, 405, 312, 281, 188, 157, 964, 933, 902, 840, 809, 778, 716,
685, 654, 592, 561,

130 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

530, 468,

437, 406, 344,

313, 282, 220,

189, 158, 996,

965, 934, 903,

872, 841,

810, 779, 748,

717, 686, 655,

624, 593, 562,

531, 500, 469,

438, 407,

376, 345,

314, 283

252,221, 190,

159, 997, 966,

935, 873, 842,

811, 749, 718,

687, 625,

594, 563, 501,

470, 439, 377,

346, 315, 253

222,191, 998,

967, 874,

843, 750,

719, 626,

595, 502, 471,

378, 347, 254,

223, 999, 875,

751, 627, 503,

379, 255

904, 780, 656,

532, 408, 284,

936, 905, 812,

781, 688, 657,

564, 533,

440, 409,

316, 285

968, 937, 906,

844, 813, 782,

720, 689, 658,

596, 565, 534,

472,441, 410, 348, 317, 286, 1000, 969, 938, 907, 876, 845, 814, 783,

752,721, 690, 659,

628, 597, 566, 535, 504, 473, 442, 411, 380, 349, 318, 287, 1001, 970,

939, 877, 846, 815, 753, 722, 691, 629, 598, 567, 505, 474, 443, 381,

350, 319, 1002, 971,

878, 847, 754, 723, 630, 599, 506, 475, 382, 351, 1003, 879, 755, 631,

507, 383, 908, 784, 660, 536, 412, 940, 909, 816, 785, 692, 661, 568,

537, 444, 413, 972,

941, 910, 848, 817, 786, 724, 693, 662, 600, 569, 538, 476, 445, 414,

1004, 973, 942, 911, 880, 849, 818, 787, 756, 725, 694, 663, 632, 601,

570, 539, 508, 477,

446, 415, 1005, 974, 943, 881, 850, 819, 757, 726, 695, 633, 602, 571,

509, 478, 447, 1006, 975, 882, 851, 758, 727, 634, 603, 510, 479,

1007, 883, 759, 635, 511,

912, 788, 664, 540, 944, 913, 820, 789, 696, 665, 572, 541, 976, 945,

914, 852, 821, 790, 728, 697, 666, 604, 573, 542, 1008, 977, 946, 915,

884, 853, 822, 791,

760, 729, 698, 667, 636, 605, 574, 543, 1009, 978, 947, 885, 854, 823,

761, 730, 699, 637, 606, 575, 1010, 979, 886, 855, 762, 731, 638, 607,

1011, 887, 763, 639,

916, 792, 668, 948, 917, 824, 793, 700, 669, 980, 949, 918, 856, 825,

794,732,701, 670, 1012, 981, 950, 919, 888, 857, 826, 795, 764, 733,

702,671, 1013, 982,

951, 889, 858, 827, 765, 734, 703, 1014, 983, 890, 859, 766, 735, 1015,

891, 767, 920, 796, 952, 921, 828, 797, 984, 953, 922, 860, 829, 798,

1016, 985, 954, 923,

892, 861, 830, 799, 1017, 986, 955, 893, 862, 831, 1018, 987, 894, 863,

1019, 895, 924, 956, 925, 988, 957, 926, 1020, 989, 958, 927, 1021,

990, 959, 1022, 991, 1023,

10.2 Conversion tables

This section defines the constant lookup tables used to convert between different representations.

b_width_log2_lookup[BLOCK_SIZES]= {0,0,1,1,1,2,2,2,3, 3, 3, 4, 4}

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

131

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

| b_height_log2_lookup[BLOCK_SIZES]={0,1,0,1,2,1,2,3,2,3,4,3,4} |

| num_4x4_blocks_wide_lookup] BLOCK_SIZES]={1,1,2,2,2,4,4,4,8, 8, 8, 16, 16} |

| num_4x4_blocks_high_lookup[BLOCK_SIZES | ={1,2,1,2,4,2,4, 8,4, 8, 16,8, 16} |

| mi_width_log2_lookup[BLOCK_SIZES]=1{0,0,0,0,0,1,1,1,2,2,2,3, 3} |

‘ num_8x8_blocks_wide_lookup[BLOCK_SIZES] ={1,1,1,1,1,2,2,2,4,4,4, 8, 8} ‘

‘ mi_height_log2_lookup[BLOCK_SIZES1={0,0,0,0,1,0,1,2,1,2,3, 2, 3} ‘

‘ num_8x8_blocks_high_lookup[BLOCK_SIZES 1={1,1,1,1,2,1,2,4,2,4, 8, 4, 8} ‘

‘ size_group_lookup[BLOCK_SIZES]={0,0,0,1,1,1,2,2,2, 3, 3, 3, 3} ‘

tx_mode_to_biggest tx_size[TX_MODES] = {
TX_4X4,
TX_8X8,
TX_16X16,
TX_32X32,
TX_32X32

subsize_lookup[PARTITION_TYPES][BLOCK_SIZES] ={
{ //PARTITION_NONE
BLOCK_4X4, BLOCK_4X8, BLOCK_8X4,
BLOCK_8X8, BLOCK_8X16, BLOCK_16X8,
BLOCK_16X16, BLOCK_16X32, BLOCK_32X186,
BLOCK_32X32, BLOCK_32X64, BLOCK_64X32,
BLOCK_64X64,

}, { // PARTITION_HORZ
BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID,
BLOCK_8X4, BLOCK_INVALID, BLOCK_INVALID,
BLOCK_16X8, BLOCK_INVALID, BLOCK_INVALID,
BLOCK_32X16, BLOCK_INVALID, BLOCK_INVALID,
BLOCK_64X32,

1, { // PARTITION_VERT

132 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_4X8, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_8X16, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_16X32, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_32X64,

1, { // PARTITION_SPLIT

BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_4X4, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_8X8, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_16X16, BLOCK_INVALID, BLOCK_INVALID,

BLOCK_32X32,

| coefband_4x4[161=1{0,1,1,2,2,2,3,3,3,3,4,4,4,5,5, 5)

coefband_8x8plus[1024] = {

0,1,1,2,2,2,3,3,3,3,4,4,4,4,4,4,

,4,4,4,4,5,5,5,5,5,5,5,5,5, 5, 5,

,5,5,555,5,5/5,5,5,5,5,5,5,5,

,5,5,555,5,5/5,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,55,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

55,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

55,5,55,5,55,5,5/5,5,5,5,5,

55,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,5,5,5,5,5,5,

55,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,55,5,5,5,5,

5,5,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

55,5,55,5,55,5,5,5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

5,5,5,55,5,55,5,5/5,5,5,5,5,

,5,5,55/5,5,5/5,5,5,5,5,5,5,5,

olololalalalaloaloalololoalalalalalalaloalalololalals

,5,5,55/5,5,5/5,5,5/5,5,5,5,5,

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

133

VP9 Bitstream & Decoding Process Specification - v0.6

134

31st March 2016

,5,5,5,

55,5,55,5,55,5,5,5,5,

,5,5,5,

55,5,55,5,55,5,5,5,5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,55,5,5,5,

5,5,5,

5, 5,

,5,5,5,

5,5,5,5,5,5,5,

5,5,5,

5, 5,

QAN ARG AN RN NG RN RO RO EROENO NGO RO RN AN NG NGO AN IO IO RN NGO RN ERO RO RN ERO RN RO RN AN NG ARG RN NG, NS RNe) |

,5,5,5,

5,5,5,55,5,5,

5,5,5,

5,5

‘ energy class[12]1={0, 1, 2,

3’ 3, 4!

4,5,5,5,5,5}

mode2txfm_map[MB_MODE_COUNT] = {

DCT_DCT, //DC

ADST DCT, //V

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

DCT_ADST, //H

DCT_DCT, // D45

ADST_ADST, /D135

ADST_DCT, //D117

DCT_ADST, // D153

DCT_ADST, // D207

ADST_DCT, // D63

ADST_ADST, // TM

DCT_DCT, /I NEARESTMV

DCT_DCT, /I NEARMV

DCT_DCT, /I ZEROMV

DCT_DCT /[NEWMV

10.3 Pareto probability table

This section defines the Pareto lookup table used to generate probabilities for coefficients:

pareto_table[128][8] = {

{ 3, 86,128, 6, 86, 23, 88, 29},

{9, 86,129, 17, 88, 61, 94, 76},

{15, 87,129, 28, 89, 93, 100, 110},

{20, 88, 130, 38, 91, 118, 106, 136},

{26, 89, 131, 48, 92, 139, 111, 156},

{31, 90, 131, 58, 94, 156, 117, 171},

{37, 90, 132, 66, 95, 171, 122, 184},

{42, 91,132, 75, 97, 183, 127, 194},

{47, 92,133, 83, 98, 193, 132, 202},

{52, 93, 133, 90, 100, 201, 137, 208},

{57, 94,134, 98, 101, 208, 142, 214},

{62, 94,135, 105, 103, 214, 146, 218},

{66, 95,135, 111, 104, 219, 151, 222},

{71, 96, 136, 117, 106, 224, 155, 225},

{76, 97,136, 123, 107, 227, 159, 228},

{80, 98,137, 129, 109, 231, 162, 231},

{84, 98, 138, 134, 110, 234, 166, 233},

{89, 99, 138, 140, 112, 236, 170, 235},

{93, 100, 139, 145, 113, 238, 173, 236},

{97, 101, 140, 149, 115, 240, 176, 238},

{101, 102, 140, 154, 116, 242, 179, 239},

{105, 103, 141, 158, 118, 243, 182, 240},

{109, 104, 141, 162, 119, 244, 185, 241},

{113, 104, 142, 166, 120, 245, 187, 242},

{116, 105, 143, 170, 122, 246, 190, 243},

{120, 106, 143, 173, 123, 247, 192, 244},

{123, 107, 144, 177, 125, 248, 195, 244},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

135

136

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{127, 108,

145, 180, 126,

249, 197, 245},

{130, 109,

145, 183, 128,

249, 199, 245},

{134, 110,

146, 186, 129,

250, 201, 246},

{137, 111,

147,189, 131,

251, 203, 246},

{140, 112,

147,192, 132,

251, 205, 247},

{143, 113,

148, 194, 133

251, 207, 247},

{146, 114,

149, 197, 135

252, 208, 248},

{149, 115,

149, 199, 136

252, 210, 248},

{152, 115,

150, 201, 138,

252, 211, 248},

{155, 116

151, 204, 139,

253, 213, 249},

{158, 117,

151, 206, 140,

253, 214, 249},

{161, 118,

152, 208, 142,

253, 216, 249},

{163, 119,

153, 210, 143

253, 217, 249},

{166, 120,

153, 212, 144,

254, 218, 250},

{168, 121,

154, 213, 146,

254, 220, 250},

(171, 122,

155, 215, 147,

254, 221, 250},

{173, 123,

155, 217, 148,

254, 222, 250},

{176, 124,

156, 218, 150

254, 223, 250},

{178, 125,

157, 220, 151,

254, 224, 251},

{180, 126,

157, 221, 152,

254, 225, 251},

{183, 127,

158, 222, 153,

254, 226, 251},

{185, 128,

159, 224, 155,

255, 227, 251},

{187, 129,

160, 225, 156

255, 228, 251},

{189, 131,

160, 226, 157,

255, 228, 251},

{191, 132,

161, 227, 159,

255, 229, 251},

{193, 133,

162, 228, 160

255, 230, 252},

{195, 134,

163, 230, 161,

255, 231, 252},

{197, 135,

163, 231, 162,

255, 231, 252},

{199, 136,

164, 232, 163,

255, 232, 252},

{201, 137,

165, 233, 165,

255, 233, 252},

{202, 138,

166, 233, 166,

255, 233, 252},

{204, 139,

166, 234, 167,

255, 234, 252},

{206, 140

167, 235, 168

255, 235, 252},

{207, 141,

168, 236, 169,

255, 235, 252},

{209, 142,

169, 237, 171,

255, 236, 252},

{210, 144,

169, 237, 172,

255, 236, 252},

{212, 145,

170, 238, 173

255, 237, 252},

{214, 148,

171, 239, 174,

255, 237, 253},

{215, 147,

172, 240, 175,

255, 238, 253},

{216, 148

173, 240, 176,

255, 238, 253},

{218, 149

173, 241,177

255, 239, 253},

{219, 150

174,241,179,

255, 239, 253},

{220, 152,

175, 242, 180,

255, 240, 253},

{222, 153,

176, 242, 181,

255, 240, 253},

{223, 154,

177, 243, 182,

255, 240, 253},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{224, 155,

178, 244, 183,

255, 241, 253},

{225, 156

178, 244, 184,

255, 241, 253},

{226, 158,

179, 244, 185,

255, 242, 253},

{228, 159,

180, 245, 186

255, 242, 253},

{229, 160,

181, 245, 187

255, 242, 253},

{230, 161,

182, 246, 188,

255, 243, 253},

{231, 163,

183, 246, 189,

255, 243, 253},

{232, 164,

184, 247, 190,

255, 243, 253},

{233, 165,

185, 247, 191,

255, 244, 253},

{234, 166,

185, 247, 192,

255, 244, 253},

{235, 168,

186, 248, 193

255, 244, 253},

{236, 169,

187, 248, 194,

255, 244, 253},

{236, 170,

188, 248, 195

255, 245, 253},

{237, 171,

189, 249, 196

255, 245, 254},

{238, 173,

190, 249, 197

255, 245, 254},

{239, 174,

191, 249, 198

255, 245, 254},

{240, 175,

192, 249, 199

255, 246, 254},

{240, 177,

193, 250, 200,

255, 246, 254},

{241, 178,

194, 250, 201,

255, 246, 254},

{242, 179,

195, 250, 202,

255, 246, 254},

{242, 181,

196, 250, 203,

255, 247, 254},

{243, 182,

197, 251, 204,

255, 247, 254},

{244, 184,

198, 251, 205,

255, 247, 254},

{244, 185,

199, 251, 206,

255, 247, 254},

{245, 186,

200, 251, 207,

255, 247, 254},

{246, 188,

201, 252, 207,

255, 248, 254},

{246, 189,

202, 252, 208,

255, 248, 254},

{247, 191,

203, 252, 209,

255, 248, 254},

{247,192,

204, 252, 210,

255, 248, 254},

{248, 194,

205, 252, 211,

255, 248, 254},

{248, 195,

206, 252, 212,

255, 249, 254},

{249, 197,

207, 253, 213

255, 249, 254},

{249, 198,

208, 253, 214,

255, 249, 254},

{250, 200,

210, 253, 215,

255, 249, 254},

{250, 201,

211, 253, 215,

255, 249, 254},

{250, 203,

212, 253, 216,

255, 249, 254},

{251, 204,

213, 253, 217,

255, 250, 254},

{251, 206,

214, 254, 218,

255, 250, 254},

{252, 207,

216, 254, 219,

255, 250, 254},

{252, 209,

217, 254, 220,

255, 250, 254},

{252, 211,

218, 254, 221,

255, 250, 254},

{253, 213,

219, 254, 222,

255, 250, 254},

{253, 214,

221, 254, 223,

255, 250, 254},

{253, 216,

222, 254, 224,

255, 251, 254},

{253, 218,

224, 254, 225,

255, 251, 254},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

137

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{254, 220,

225, 254, 225,

255, 251, 254},

{254, 222,

227, 255, 226,

255, 251, 254},

{254, 224,

228, 255, 227,

255, 251, 254},

{254, 226,

230, 255, 228,

255, 251, 254},

{255, 228,

231, 255, 230,

255, 251, 254},

{255, 230,

233, 255, 231,

255, 252, 254},

{255, 232,

235, 255, 232,

255, 252, 254},

{255, 235,

237, 255, 233,

255, 252, 254},

{255, 238,

240, 255, 235,

255, 252, 255},

{255, 241,

243, 255, 236,

255, 252, 254},

{255, 246,

247, 255, 239,

255, 253, 255}

10.4 Fixed probability tables

This section contains the fixed tables of probabilities used for partition and intra mode in intra frames:

138

kf_partition_probs[PARTITION_CONTEXTS][PARTITION_TYPES - 1]={

/I 8x8 -> 4x4

{158, 97, 941}, // a/l both not split

{ 93, 24, 99}, // asplit, | not split

{ 85,119, 441}, //|split, a not split

{ 62, 59, 67}, // all both split

/l 16x16 -> 8x8

{149, 53, 531}, // a/l both not split

{ 94, 20,

481}, // a split, | not split

{ 83, 53,

241}, /1 split, a not split

{ 52, 18,

18}, /I all both split

// 32x32 -> 16x16

{150, 40, 391}, // a/l both not split

{ 78, 12, 26}, // a split, | not split

{ 67, 33, 11}, //1split, a not split

{ 24, 7, 5}, // all both split

// 64x64 -> 32x32

{174, 35, 491}, // a/l both not split

{ 68, 11, 27}, // a split, | not split

{ 57, 15, 91}, /'l split, a not split

{ 12, 3, 31}, // all both split

}

kf_y_mode_probs[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1]={

{ / above = dc

{137, 30, 42, 148,151,207, 70, 52, 91}, // left = dc

{ 92, 45,102, 136, 116, 180, 74, 90,100}, //left=v

{ 73, 32, 19,187, 222,215, 46, 34,100}, //left=h

{ 91, 30, 32,116, 121, 186, 93, 86, 941}, // left = d45

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 72, 35, 36, 149, 68, 206, 68, 63,105}, // left=d135

{ 73, 31, 28,138, 57,124, 55,122,151}, // left=d117

{ 67, 23, 21, 140, 126, 197, 40, 37,171}, // left =d153

{ 86, 27, 28, 128, 154, 212, 45, 43, 53}, // left = d207

{ 74, 32, 27,107, 86, 160, 63, 134, 102}, // left = d63

{ 59, 67, 44, 140, 161, 202, 78, 67, 119} //left =tm
}, { // above = v

{ 63, 36, 126, 146, 123, 158, 60, 90, 96}, // left=dc

{ 43, 46,168, 134, 107, 128, 69, 142, 921}, //left=v

{ 44, 29, 68, 159, 201, 177, 50, 57, 77}, //left=h

{ 58, 38, 76, 114, 97,172, 78,133, 921}, // left = d45

{ 46, 41, 76, 140, 63, 184, 69, 112, 57}, // left =d135

{ 38, 32, 85, 140, 46, 112, 54,151,133}, // left=d117

{ 39, 27, 61,131,110, 175, 44, 75,136}, // left =d153

{ 52, 30, 74,113,130, 175, 51, 64, 58}, /I left = d207

{ 47, 35, 80, 100, 74, 143, 64,163, 74}, // left = d63

{ 36, 61,116, 114, 128, 162, 80, 125, 82} //left =tm
}, { // above = h

{ 82, 26, 26, 171, 208, 204, 44, 32,105}, //left=dc

{ 55, 44, 68, 166, 179, 192, 57, 57,108}, //left=v

{ 42, 26, 11,199, 241, 228, 23, 15, 85}, //left=h

{ 68, 42, 19,131, 160, 199, 55, 52, 831}, //left = d45

{ 58, 50, 25,139, 115,232, 39, 52,118}, //left=d135

{ 50, 35, 33,153, 104, 162, 64, 59, 131}, // left=d117

{ 44, 24, 16, 150, 177, 202, 33, 19, 156}, // left = d153

{ 55, 27, 12,153, 203, 218, 26, 27, 49}, /I left = d207

{ 53, 49, 21,110, 116, 168, 59, 80, 76}, // left = d63

{ 38, 72, 19, 168, 203, 212, 50, 50, 107} //left=tm
}, { // above = d45

{103, 26, 36, 129, 132, 201, 83, 80, 93}, //left=dc

{ 59, 38, 83,112,103, 162, 98,136, 90}, //left=v

{ 62, 30, 23, 158, 200, 207, 59, 57, 501}, //left=h

{ 67, 30, 29, 84, 86, 191, 102, 91, 591}, // left = d45

{ 60, 32, 33,112, 71, 220, 64, 89, 104}, // left =d135

{ 53, 26, 34,130, 56, 149, 84,120, 103}, // left=d117

{ 53, 21, 23,133, 109, 210, 56, 77,172}, // left=d153

{77, 19, 29, 112, 142, 228, 55, 66, 36}, // left = d207

{ 61, 29, 29, 93, 97, 165, 83, 175,162}, // left = d63

{ 47, 47, 43, 114,137,181, 100, 99, 95} //left =tm
}, { // above = d135

{ 69, 23, 29,128, 83, 199, 46, 44,101}, //left=dc

{ 53, 40, 55,139, 69, 183, 61, 80,1101}, //left=v

{ 40, 29, 19, 161, 180, 207, 43, 24, 91}, //left=h

{ 60, 34, 19,105, 61, 198, 53, 64, 89}, //left = d45

{ 52, 31, 22,158, 40, 209, 58, 62, 89}, //left=d135

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 139

140

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{ 44, 31,

29,147, 46, 158, 56, 102, 198}, // left=d117

{ 35, 19,

12,135, 87,209, 41, 45,167}, // left =d153

{ 55, 25,

21,118, 95,215, 38, 39, 66}, //left =d207

{ 51, 38,

25,113, 58, 164, 70, 93, 97}, // left = d63

{ 47, 54,

34,146, 108, 203, 72,103, 151} //left=tm

}, { // above =d117

{ 64, 19,

37,156, 66, 138, 49, 95,133}, //left=dc

{ 46, 27,

80, 150, 55, 124, 55,121,135}, //left=v

{ 36, 23,

27,165, 149, 166, 54, 64,118}, //left=h

{ 53, 21,

36, 131, 63, 163, 60, 109, 811}, //left = d45

{ 40, 26,

35, 154, 40, 185, 51, 97,123}, // left=d135

{ 35, 19,

34,179, 19, 97, 48,129,124}, // left=d117

{ 36, 20,

26,136, 62, 164, 33, 77,154}, // left = d153

{ 45, 18,

32,130, 90, 157, 40, 79, 91}, // left =d207

{ 45, 26,

28,129, 45,129, 49,147,123}, // left = d63

{ 38, 44,

51,136, 74,162, 57, 97,121} //left=1tm

}, { // above = d153

{ 75, 17,

22,136, 138, 185, 32, 34,166}, // left=dc

{ 56, 39,

58,133, 117,173, 48, 53,187}, //left=v

{ 35, 21,

12,161, 212, 207, 20, 23,145}, //left=h

{ 56, 29,

19, 117,109, 181, 55, 68, 112}, // left = d45

{ 47, 29,

17,153, 64, 220, 59, 51,114}, //left =d135

{ 46, 16,

24,136, 76, 147, 41, 64,172}, // left=d117

{ 34, 17,

11,108, 152, 187, 13, 15,209}, //left =d153

{ 51, 24,

14,115, 133, 209, 32, 26, 104}, // left = d207

{ 55, 30,

18,122, 79,179, 44, 88,116}, // left = d63

{ 37, 49,

25,129, 168, 164, 41, 54,148} //left=1tm

}, { // above = d207

{ 82, 22,

32,127,143, 213, 39, 41, 70}, //left=dc

{ 62, 44,

61, 123, 105, 189, 48, 57, 64}, //left=v

{ 47, 25,

17,175, 222, 220, 24, 30, 86}, //left=h

{ 68, 36,

17,106, 102, 206, 59, 74, 74}, // left = d45

{ 57, 39,

23,151, 68, 216, 55, 63, 581}, //left=d135

{ 49, 30,

35,141, 70, 168, 82, 40,115}, //left=d117

{ 51, 25,

15, 136, 129, 202, 38, 35, 139}, //left =d153

{ 68, 26,

16, 111, 141, 215, 29, 28, 28}, // left = d207

{ 59, 39,

19, 114, 75,180, 77,104, 42}, // left = d63

{ 40, 61,

26, 126, 152, 206, 61, 59, 93} //left=1tm

}, { // above = d63

{ 78, 23,

39, 111,117,170, 74,124, 941}, //left=dc

{ 48, 34,

86, 101, 92, 146, 78,179,134}, //left=v

{ 47, 22,

24,138, 187,178, 68, 69, 591}, //left=h

{ 56, 25,

33,105, 112, 187, 95,177,129}, // left = d45

{ 48, 31,

27,114, 63, 183, 82, 116, 56}, // left =d135

{ 43, 28,

37,121, 63, 123, 61,192,169}, // left=d117

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 42, 17, 24,109, 97,177, 56, 76, 122}, // left = d153
{ 58, 18, 28,105, 139, 182, 70, 92, 63}, // left = d207
{ 46, 23, 32, 74, 86, 150, 67, 183, 88}, // left = d63
{ 36, 38, 48, 92,122, 165, 88, 137, 91} //left=1tm
}, { // above =tm
{ 65, 70, 60, 155, 159, 199, 61, 60, 811}, //left=dc
{ 44, 78,115,132, 119,173, 71,112, 93}, //left=v
{ 39, 38, 21, 184, 227, 206, 42, 32, 64}, //left=h
{ 58, 47, 36, 124,137,193, 80, 82, 781}, //left=d45
{ 49, 50, 35,144, 95, 205, 63, 78, 591}, //left=d135
{ 41, 53, 52,148, 71, 142, 65,128, 51}, // left =d117
{ 40, 36, 28, 143, 143, 202, 40, 55, 137}, /I left=d153
{ 52, 34, 29,129, 183, 227, 42, 35, 43}, // left = d207
{ 42, 44, 44,104, 105, 164, 64, 130, 80}, // left = d63
{ 43, 81, 53, 140, 169, 204, 68, 84, 72} //left=tm
}

}

kf_uv_mode_probs[INTRA_MODES][INTRA_MODES - 1]={
{144, 11, 54,157,195, 130, 46, 58,108}, //y = dc
{118, 15,123, 148, 131, 101, 44, 93,131}, //y=v
{113, 12, 23, 188,226, 142, 26, 32,125}, //y=h
{120, 11, 50, 123, 163, 135, 64, 77,103}, //y = d45
{113, 9, 36,155, 111, 157, 32, 44,161}, //y=d135
{116, 9, 55,176, 76, 96, 37, 61,149}, //y=d117
{115, 9, 28,141,161, 167, 21, 25,193}, //y = d153
{120, 12, 32, 145,195, 142, 32, 38, 86}, /Iy = d207
{116, 12, 64, 120, 140, 125, 49, 115,121}, //'y = d63
{102, 19, 66, 162, 182, 122, 35, 59, 128} //y =tm

}

10.5 Default probability tables

This section contains the default values for the probability tables. For the probability table named “x”, the
table “default_x" contains the corresponding default values.

There are no default values provided for segmentation_tree_probs and segmentation_pred_prob as these are
always sent in the uncompressed header when they are needed.

default_partition_probs[PARTITION_CONTEXTS][PARTITION_TYPES - 1] =¢{
/] 8x8 -> 4x4
{199, 122, 141}, // a/l both not split
{147, 63,159}, // a split, | not split
{148, 133, 118 }, // | split, a not split
{121, 104, 114}, // a/l both split
/l 16x16 -> 8x8

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 141

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{174, 73, 87}, // a/l both not split
{ 92, 41, 83}, // a split, | not split
{ 82, 99, 501}, //lsplit, a not split
{ 53, 39, 39}, //all both split

/] 32x32 -> 16x16

{177, 58, 591}, // a/l both not split
{ 68, 26, 63}, // asplit, | not split
{ 52, 79, 251}, //'lsplit, a not split
{ 17, 14, 12}, /I a/l both split

/] 64x64 -> 32x32

{222, 34, 30}, // a/l both not split
{ 72, 16, 44}, // a split, | not split
{ 58, 32, 12}, //|split, a not split
{10, 7, 6} //all both split

}

default_y_mode_probs[BLOCK_SIZE_GROUPS][INTRA_MODES - 1] ={
{ 65, 32, 18, 144,162, 194, 41, 51, 98}, // block_size < 8x8

{132, 68, 18, 165,217, 196, 45, 40, 78}, // block_size < 16x16

{173, 80, 19, 176, 240, 193, 64, 35, 46}, // block_size < 32x32
{221,135, 38,194, 248,121, 96, 85, 29} // block_size >= 32x32

}

default_uv_mode_probs[INTRA_MODES][INTRA_MODES - 1] ={
{120, 7, 76,176, 208, 126, 28, 54,103}, //y =dc

{ 48, 12, 154, 155, 139, 90, 34, 117,119}, //ly=v

{ 67, 6, 25,204, 243,158, 13, 21, 96}, //y=h

{ 97, 5, 44,131,176, 139, 48, 68, 97}, /|y = d45
{ 83, 5, 42,156, 111, 152, 26, 49,152}, //y = d135
{ 80, 5, 58,178, 74, 83, 33, 62,145}, //y = d117
{ 86, 5, 32,154,192, 168, 14, 22,163}, //y = d153
{ 85, 5, 32,156,216, 148, 19, 29, 73}, //y = d207

{77, 7, 64,116, 132, 122, 37,126,120}, //y = d63
{101, 21,107, 181, 192, 103, 19, 67,125} //y=tm

}

default_skip_prob[SKIP_CONTEXTS] ={
192, 128, 64

}

default_is_inter_prob[IS_INTER_CONTEXTS] ={
9,102, 187, 225

}

142 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

default_comp_mode_prob[COMP_MODE_CONTEXTS] = {

239, 183, 119, 96, 41

}

default_comp_ref prob[REF_CONTEXTS] = {

50, 126, 123, 221, 226

}

default_single_ref prob[REF_CONTEXTS]J[2]={

{ 33, 16},

{77, 74},

{142,142},

{172,170},

{238,247}

}

default_mv_sign_prob[2] = {

128, 128

}

default_mv_bits_prob[2][MV_OFFSET _BITS] ={

{136, 140, 148, 160, 176, 192, 224, 234, 234, 240},

{136, 140, 148, 160, 176, 192, 224, 234, 234, 240}

}

default_mv_class0_bit_prob[2] ={

216, 208

}

default_tx_probs[TX_SIZES][TX_SIZE_CONTEXTS][TX_SIZES-1]={

{

{0,0,03,

{0,0,0}

{100,0,0},

{66,0,0}

{20,152, 0},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

143

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{15,101,0)

{3,136, 37},
(5,52, 13}

default_inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1] ={
{2, 173, 34}, // 0 = both zero mv

{7, 145, 85}, // 1 = one zero mv + one a predicted mv
{7, 166, 63}, // 2 = two predicted mvs
{7, 94, 66}, // 3 =one predicted/zero and one new mv

{8, 64, 46}, // 4 =two new mvs
{17, 81, 31}, // 5= one intra neighbor + x
{25, 29, 30}, // 6 =two intra neighbors

default_interp_filter_probs[INTERP_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS -1]={

{235,162},
{36, 255},
(34,3},

{149, 144}

}

default_mv_joint_probs[3] = {
32, 64, 96

}

default_mv_class_probs[2][MV_CLASSES - 1] ={
{224, 144, 192, 168, 192, 176, 192, 198, 198, 245},
{216, 128, 176, 160, 176, 176, 192, 198, 198, 208}

}

default_mv_classO_fr_probs[2][CLASSO_SIZE][3] ={
{{128, 128, 64}, {96, 112, 64}},
{{128, 128, 64}, {96, 112, 64}}

}

default_mv_classO_hp_prob[2] ={
160, 160

144 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

)

default_mv_fr_probs[2][3]={
{64, 96, 64},
{64, 96, 64}

}

default_mv_hp_prob[2]={
128, 128

}

default_coef_probs[TX_SIZES][BLOCK_TYPES][REF_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS]| UNCONSTRAINED_NODES | = {

{
{/* block Type 0 */
{/* Intra */

{/* Coeff Band 0 */
{195, 29, 183},
{ 84, 49,136},
{ 8, 42, 71},
{ 0, 0, 0}, //unused
{ 0, 0, 0}, //unused
{ 0, 0, 0} //unused

}, {/* Coeff Band 1 */
{ 31,107,169},
{ 35, 99, 159},
{ 17, 82,140},
{ 8, 66,114},
{ 2, 44, 761},
{ 1, 19, 32}

}, {/* Coeff Band 2 */
{ 40, 132, 201},
{ 29, 114, 187 },
{ 13, 91,157},
{ 7, 75,127},
{ 3, 58, 95},
{ 1, 28, 47}

}, {I* Coeff Band 3 */
{ 69, 142,221},
{ 42,122,201},
{ 15, 91,159},
{ 6, 67,121},
{ 1, 42, 77},
{ 1, 17, 31}

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

145

VP9 Bitstream & Decoding Process Specification - v0.6

146

31st March 2016

}, { /" Coeff Band 4 */

{102, 148, 228 },

{ 67,117,204},

{ 17, 82,154},

{ 6, 59,114},

{ 2, 39, 75},

{ 1, 15, 29}

}, {I* Coeff Band 5 */

{156, 57,233},

{119, 57,212},

{ 58, 48,163},

{ 29, 40, 124},

{ 12, 30, 81},

{ 3,12, 31}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{191,107, 226 },

(124,117,204 },

{ 25, 99, 155},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 29,148,210},

{ 37,126,194 },

{ 8, 93,157},

{ 2, 68,118},

{ 1, 39, 69},

{ 1, 17, 33}

}, { /" Coeff Band 2 */

{ 41,151,213},

{ 27,123,193},

{ 3, 82,144},

{ 1, 58,105},

{ 1, 32, 60},

{ 1, 13, 26}

}, {I* Coeff Band 3 */

{ 59, 159,220 },

{ 23,126, 198},

{ 4, 88,151},

{ 1, 66,114},

{ 1, 38, 71},

{ 1, 18, 34}

}, { /" Coeff Band 4 */

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{114, 136, 232 },
{ 51, 114, 207 },
{ 11, 83,155},
{ 3, 56,105},
{ 1, 33, 65},
{ 1, 17, 34}

}, {* Coeff Band 5 */
{149, 65, 234},
{121, 57,215},

{ 61, 49, 166},
{ 28, 36,114},
{ 12, 25, 76},
{ 3, 16, 42}
}
}
}, {/* block Type 1 */
{/* Intra */

{/* Coeff Band 0 */
{214, 49,220},
{132, 63, 188},

{ 42, 65,137},

{ 0, 0, 0}, //unused
{ 0, 0, 0}, //unused
{ 0, 0, 0}//unused

}, {/* Coeff Band 1 */
{ 85,137,221},
{104, 131, 216 },

{ 49,111,192},
{ 21, 87,155},
{ 2, 49, 87},
{ 1, 16, 28}

}, {/* Coeff Band 2 */
{ 89, 163, 230},

{ 90, 137, 220},
{ 29, 100, 183 },
{ 10, 70,135},
{ 2, 42, 81},
{ 1, 17, 33}

}, {I* Coeff Band 3 */
{108, 167, 237 },

{ 55, 133, 222},
{ 15, 97,179},
{ 4, 72,135},
{ 1, 45, 85},
{ 1, 19, 38}

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 147

VP9 Bitstream & Decoding Process Specification - v0.6

148

31st March 2016

}, { /" Coeff Band 4 */

{124, 146, 240 },

{ 66, 124,224},

{ 17, 88,175},

{ 4, 58,122},

{ 1, 36, 75},

{ 1, 18, 37}

}, {I* Coeff Band 5 */

{141, 79,241},

{126, 70,227}

{ 66, 58,182},

{ 30, 44,136},

{ 12, 34, 96},

{ 2, 20, 47}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{229, 99,249}

{143,111, 235},

{ 46,109, 192},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 82,158,236},

{ 94,146, 224 },

{ 25,117,191},

{ 9, 87,149},

{ 3, 56, 99},

{ 1, 33, 57}

}, { /" Coeff Band 2 */

{ 83,167,237},

{ 68,145, 222},

{ 10, 103, 177},

{ 2, 72,131},

{ 1, 41, 79},

{ 1, 20, 39}

}, {I* Coeff Band 3 */

{ 99, 167, 239},

{ 47,141,224},

{ 10, 104, 178},

{ 2, 73,133},

{ 1, 44, 85},

{ 1, 22, 47}

}, { /" Coeff Band 4 */

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{127, 145, 243 },
{ 71,129, 228 },
{ 17, 93,177},
{ 3, 61,124},
{ 1, 41, 84},
{ 1, 21, 52}

}, {* Coeff Band 5 */
{157, 78,244},
{140, 72,231},
{ 69, 58, 184},
{ 31, 44,137},
{ 14, 38,105},
{ 8, 23, 61}

{/* block Type 0 */
{/* Intra */

{/* Coeff Band 0 */
{125, 34,187},

{ 52, 41,133},

{ 6, 31, 56},

{ 0, 0, 0}, //unused
{ 0, 0, 0}, //unused
{ 0, 0, 0}//unused
}, {/* Coeff Band 1 */

{ 37,109, 153 },

{ 51,102, 147 },

{ 23, 87,128},

{ 8, 67,101},

{ 1, 41, 63},

{ 1, 19, 29}

}, {/* Coeff Band 2 */

{ 31,154,185},

{ 17,127,175},

{ 6, 96,145},

{ 2, 73,114},

{ 1, 51, 82},

{ 1, 28, 45}

}, {I* Coeff Band 3 */

{ 23, 163, 200 },

{ 10,131,185},

{ 2, 93,148},

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 149

VP9 Bitstream & Decoding Process Specification - v0.6

150

31st March 2016

{ 1, 67,111},

{ 1, 41, 69},

{ 1,14, 24}

}, { /" Coeff Band 4 */

{ 29,176,217},

{ 12,145,201},

{ 3,101, 156},

{ 1, 69,111},

{ 1, 39, 63},

{ 1, 14, 23}

}, {I* Coeff Band 5 */

{ 57,192, 233},

{ 25,154, 215},

{ 6,109, 167},

{ 3, 78,118},

{ 1, 48, 69},

{ 1, 21, 29}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{202, 105, 245},

{108, 106, 216 },

{ 18, 90, 144},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 33,172,219},

{ 64,149, 206 },

{ 14,117,177},

{ 5, 90,141},

{ 2, 61, 95},

{ 1, 37, 57}

}, { /" Coeff Band 2 */

{ 33,179,220},

{ 11,140, 198},

{ 1, 89,148},

{ 1, 60,104},

{ 1, 33, 57},

{1, 12, 21}

}, {I* Coeff Band 3 */

{ 30,181, 221},

{ 8,141,198},

{ 1, 87,145},

{ 1, 58,100},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 1, 31, 55},

{ 1, 12, 20}

}, {/* Coeff Band 4 */
{ 32,186, 224 },
7,142,198},

1, 86, 143},

1, 58,100},

1, 31, 55},

1, 12, 22}

}, {I* Coeff Band 5 */
{ 57,192, 227 },

{ 20, 143, 204 },
{ 3, 96,154},
{ 1, 68,112},
{ 1, 42, 69},
{ 1, 19, 32}

}

}
}, {/* block Type 1 */
{/* Intra */

{/* Coeff Band 0 */
{212, 35,215},
{113, 47,169},

{ 29, 48,105},

{ 0, 0, 0}, //unused
{ 0, 0, 0}, //unused
{ 0, 0, 0}//unused

}, {/* Coeff Band 1 */
{ 74,129, 203 },
{106, 120, 203 },

{ 49,107,178},
{ 19, 84,144},
{ 4, 50, 84},
{ 1, 15, 25}

}, {/* Coeff Band 2 */
{ 71,172,217 },

{ 44,141,209},
{ 15,102,173},
{ 6, 76,133},
{ 2, 51, 89},
{ 1, 24, 42}

}, {I* Coeff Band 3 */
{ 64, 185, 231},

{ 31, 148, 216 },
{ 8,103,175},

e s s s~

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 151

VP9 Bitstream & Decoding Process Specification - v0.6

152

31st March 2016

{ 3, 74,131},

{ 1, 46, 81},

{ 1, 18, 30}

}, { /" Coeff Band 4 */

{ 65,196, 235},

{ 25,157,221},

{ 5,105, 174},

{ 1, 67,120},

{ 1, 38, 69},

{ 1, 15, 30}

}, {I* Coeff Band 5 */

{ 65, 204, 238 },

{ 30, 156, 224 },

{ 7,107,177},

2, 70, 124},

1, 42, 73},

Lot N Kate N Kt

1, 18, 34}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{225, 86,251},

{144,104, 235},

{ 42, 99, 181},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 85,175,239},

{112, 165, 229 }

{ 29,136,200},

{ 12,103, 162},

{ 6, 77,123},

{ 2, 53, 84}

}, { /" Coeff Band 2 */

{ 75,183,239},

{ 30, 155, 221},

{ 3,106, 171},

{ 1, 74,128},

{ 1, 44, 76},

{ 1, 17, 28}

}, {I* Coeff Band 3 */

{ 73,185,240},

{ 27,159, 222},

{ 2,107,172},

{ 1, 75,127},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 1, 42, 73},
{ 1, 17, 29}
}, {/* Coeff Band 4 */
{ 62,190, 238 },
{ 21, 159, 222 },
{ 2,107,172},
{ 1, 72,122},
{ 1, 40, 71},
{ 1, 18, 32}
}, {I* Coeff Band 5 */
{ 61,199, 240},
{ 27,161, 226 },
{ 4,113,180},
{ 1, 76,129},
{ 1, 46, 80},
{ 1, 23, 41}

{/* block Type 0 */
{/* Intra */
{/* Coeff Band 0 */
{ 7, 27,153},
5, 30, 95},
1, 16, 301},
0, 0, 0}, //unused
0, 0, 0}, //unused
0, 0, 0}//unused
}, {/* Coeff Band 1 */
{ 50, 75,127},
{ 57, 75,124},
{ 27, 67,108},
{ 10, 54, 86},
{ 1, 33, 52},
{ 1, 12, 18}
}, {/* Coeff Band 2 */
{ 43,125, 151},
{ 26, 108, 148 },
{ 7, 83,122},
{ 2, 59, 89},
{ 1, 38, 60},
{ 1, 17, 27}
}, {I* Coeff Band 3 */

Lot N Mt W Mt W o W e

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 153

154

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{ 23,144, 163 },

{ 13,112,154},

{ 2, 75,117},

{ 1, 50, 81},

{ 1, 31, 51),

{ 1, 14, 23}

}, { /" Coeff Band 4 */

{ 18,162, 185},

{ 6,123,171},

{ 1, 78,125},

{ 1, 51, 86},

{ 1, 31, 54},

{ 1, 14, 23}

}, {I* Coeff Band 5 */

{ 15,199, 227 },

{ 3,150,204 },

{ 1, 91,146},

{ 1, 55, 95},

{ 1, 30, 53},

{ 1, 11, 20}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{ 19, 55,240},

{ 19, 59,196 },

{ 3, 52,105},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 41, 166, 207 },

{104, 153, 199 },

{ 31,123,181},

{ 14,101, 152},

{ 5, 72,106},

{ 1, 36, 52}

}, { /" Coeff Band 2 */

{ 35,176, 211},

{ 12,131,190},

{ 2, 88,144},

1, 60, 101},

1, 36, 60},

Lot N Kate N K

1, 16, 28}

}, {I* Coeff Band 3 */

{ 28,183,213},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

8, 134, 191},

1, 86, 142},

1, 56, 96,

1, 30, 53},

eSS s~

1, 12, 20}

}, { /" Coeff Band 4 */

{ 20,190, 215},

4,135,192},

1, 84,139},

1, 53, 91},

1, 28, 49},

Lot N Mt W Mt W o W e

1, 11, 20}

}, {I* Coeff Band 5 */

{ 13,196, 216 },

2,137,192},

1, 86, 143},

1, 57, 99},

1, 32, 56},

s s s~

1, 13, 24}

}

}

}, {* block Type 1 */

{/* Intra */

{/* Coeff Band 0 */

{211, 29,217},

{ 96, 47,156},

{ 22, 43, 87},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 78,120, 193},

{111,116, 186 },

{ 46,102, 164 },

{ 15, 80,128},

{ 2, 49, 76},

{ 1, 18, 28}

}, { /" Coeff Band 2 */

{ 71,161, 203},

{ 42,132,192},

{ 10, 98, 150},

{ 3, 69,109},

{ 1, 44, 70},

{ 1, 18, 29}

}, {I* Coeff Band 3 */

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

155

VP9 Bitstream & Decoding Process Specification - v0.6

156

31st March 2016

{ 57,186, 211},

{ 30, 140, 196 },

{ 4, 93,146},

{ 1, 62,102},

{ 1, 38, 65},

{ 1, 16, 27}

2

{ " Coeff Band 4 */

{ 47,199, 217 },

{ 14,145,196 },

{ 1, 88,142},

1, 57, 981},

1, 36, 62},

Lot N Kate N K

1, 15, 26}

b

{/* Coeff Band 5 */

{ 26,219, 229},

5,155, 207 },

1, 94,151},

1, 60, 104 },

1, 36, 62},

Lot N Mt W Mt W o W e

1, 16, 28}

}

}, {/* Inter ¥/

{

/* Coeff Band 0 */

{233, 29,248},

{146, 47,220},

{ 43, 52,140},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}

,{/* Coeff Band 1 */

{100, 163, 232},

{179, 161, 222},

{ 63,142,204},

{ 37,113,174},

{ 26, 89,137},

{ 18, 68, 97}

}, { /" Coeff Band 2 */

{ 85,181,230},

{ 32,146, 209 },

{ 7,100, 164},

{ 3, 71,121},

{ 1, 45, 77},

{ 1, 18, 30}

}, {I* Coeff Band 3 */

{ 65,187,230},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 20, 148, 207 },

{ 2, 97,159},

{ 1, 68,116},

{ 1, 40, 70},

{ 1, 14, 29}

}, {/* Coeff Band 4 */
{ 40, 194, 227 },

8, 147,204 },

1, 94,155},

1, 65,112},

1, 39, 66},

1, 14, 26}

}, {I* Coeff Band 5 */
{ 16, 208, 228 },
3,151, 207 },

1, 98, 160 },

1, 67,117},

1, 41, 74},

1, 17, 31}

Lot N Mt W Mt W o W e

s s s~

{/* block Type 0 */
{/* Intra */
{/* Coeff Band 0 */
{ 17, 38,140},
{ 7, 34, 80},
1, 17, 29},
0, 0, 0}, //unused
0, 0, 0}, //unused
0, 0, 0}//unused
}, {/* Coeff Band 1 */
{ 37, 75,128},
{ 41, 76,128},
{ 26, 66,116},
{ 12, 52, 94},
{ 2, 32, 55},
{ 1, 10, 16}
}, {/* Coeff Band 2 */
{ 50, 127, 154 },
{ 37,109, 152},
{ 16, 82,121},
{ 5, 59, 85},

Lot N Kt N Kt ¥ M

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 157

158

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{ 1, 35, 54},

{ 1, 13, 20}

}, {I* Coeff Band 3 */

{ 40,142, 167},

{ 17,110, 157 },

{ 2, 711,112},

{ 1, 44, 72},

{ 1, 27, 45},

{1, 11, 17}

}, { /" Coeff Band 4 */

{ 30,175, 188},

{ 9,124,169},

{ 1, 74,116},

{ 1, 48, 78},

{ 1, 30, 49},

{ 1, 11, 18}

}, {I* Coeff Band 5 */

{ 10, 222, 223 },

{ 2,150, 194},

{ 1, 83,128},

{ 1, 48, 79},

{ 1, 27, 45},

{1, 11, 17}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{ 36, 41,235},

{ 29, 36,193},

{ 10, 27,111},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{ 85,165,222},

{177,162, 215},

{110, 135, 195},

{ 57,113, 168 },

{ 23, 83,120},

{ 10, 49, 61}

}, { /" Coeff Band 2 */

{ 85,190, 223 },

{ 36, 139, 200 },

{ 5, 90,146},

{ 1, 60,103},

{ 1, 38, 65},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

{ 1, 18, 30}

}, {I* Coeff Band 3 */
{ 72,202,223},

{ 23,141,199 },

{ 2, 86,140},

{ 1, 56, 97},

{ 1, 36, 61},

{ 1, 16, 27}

}, {/* Coeff Band 4 */
{ 55, 218, 225},

{ 13, 145,200 },

{ 1, 86,141},

{ 1, 57, 99},

{ 1, 35, 61},

{ 1, 13, 22}
}, {* Coeff Band 5 */
{ 15, 235,212},
1,132,184},
1, 84,139},
1, 57, 97},
1, 34, 56},
1, 14, 23}

Lot N Mt W Mt W o W e

}
}
}, {/* block Type 1 */
{/* Intra */

{/* Coeff Band 0 */
{181, 21,201},
{ 61, 37,123},
{ 10, 38, 71},
{ 0, 0, 0}, //unused
{ 0, 0, 0}, //unused
{ 0, 0, 0}//unused

}, {/* Coeff Band 1 */
{ 47,106, 172},
{ 95,104, 173},
{ 42, 93,159},
{18, 77,131},
{ 4, 50, 81},
{ 1, 17, 23}

}, {/* Coeff Band 2 */
{ 62,147,199},
{ 44,130, 189},
{ 28,102, 154 },
{ 18, 75,115},

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 159

VP9 Bitstream & Decoding Process Specification - v0.6

160

31st March 2016

{ 2, 44, 65},

{1, 12, 19}

}, {I* Coeff Band 3 */

{ 55,153,210},

{ 24,130, 194 },

{ 3, 93,146},

{ 1, 61, 97),

{ 1, 31, 50},

{ 1, 10, 16}

}, { /" Coeff Band 4 */

{ 49,186, 223 },

{ 17,148, 204 },

{ 1, 96,142},

{ 1, 53, 83},

{ 1, 26, 44},

{1, 11, 17}

}, {I* Coeff Band 5 */

{ 13,217,212},

2,136, 180 },

1, 78,124},

1, 50, 83},

1, 29, 49),

s s s~

1, 14, 23}

}

}, {/* Inter ¥/

{/* Coeff Band 0 */

{197, 13,247}

{ 82, 17,222},

{ 25, 17,162},

{ 0, 0, 0}, //unused

{ 0, 0, 0}, //unused

{ 0, 0, 0}//unused

}, { /" Coeff Band 1 */

{126, 186, 247 }

{234,191, 243},

(176,177,234},

{104, 158, 220 }

{ 66,128, 186 },

{ 55, 90, 137}

}, { /" Coeff Band 2 */

{111,197, 242},

{ 46,158,219},

{ 9,104,171},

{ 2, 65,125},

{ 1, 44, 80},

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6

31st March 2016

{1, 17, 91}

}, {I* Coeff Band 3 */

{104, 208, 245 }

{ 39,168,224},

{ 3,109, 162},

{ 1, 79,124},

{ 1, 50,102},

{ 1, 43,102}

}, { /" Coeff Band 4 */

{ 84,220, 246},

{ 31,177,231},

{ 2,115,180},

{ 1, 79,134},

{ 1, 55, 77},

{ 1, 60, 79}

}, {* Coeff Band 5 */

{ 43,243,240},

8, 180, 217 },

1,115, 166 },

1, 84,121},

1, 51, 67}

Lot N Mt W Mt W o W e

1, 16, 6}

Convriaht © 2016 Gooale. Inc. All Rinhts Reserved

161

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Annex A

Levels

A.1 Overview
Levels specify restrictions on the capabilities needed to decode the bitstreams.
There is only a single level currently defined in this Specification. The level is called level 1.

Level 1 limits the bitstream to a worst case of roughly a 1080P 60fps 20Mbps stream by the following
restrictions:

- Width must be less than or equal to 1920.
- Height must be less than or equal to 1080.

- The number of frames per second must be less than or equal to 60 (this includes both output frames and
frames that are not output).

- The size in bits for an intra frame must be less than or equal to 100,000,000 / 60.
- The size in bits for an inter frame must be less than or equal to 50,000,000 / 60.

- The number of times the function read_bool is called for an intra frame must be less than or equal to 2 *
100,000,000 / 60.

- The number of times the function read_bool is called for an inter frame must be less than or equal to 2 *
50,000,000 / 60.

162 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Annex B

Superframes

B.1 Overview
VP9 supports consolidating multiple coded frames into one single chunk, called a “superframe”.

The superframe index is stored in the last up to 34 bytes of a chunk. The enclosed frames can be located by
parsing this superframe index.

The syntax of the superframe is shown in section B.2, and the meaning of the syntax elements is described in
section B.3. The method for parsing a superframe is described in section B.4.

B.2 Superframe syntax

superframe(sz) { Type
for(i=0; i< NumFrames; i++)
frame(frame_sizes[i])
superframe_index()

B.2.1 Superframe index

superframe_index() { Type
superframe_header()
for(i=0;i < NumFrames; i++)
frame_sizes[i] f(SzBytes)
superframe_header()

B.2.2 Superframe header syntax

superframe_header() { Type
superframe_marker f(3)
bytes_per_framesize_minus_1 f(2)
frames_in_superframe_minus_1 f(3)

}

B.3 Superframe semantics
sz specifies the number of bytes in the superframe and is provided by external means.
frame_sizes|[i] specifies the size in bytes of frame number i (zero indexed) within this superframe.

superframe_marker is equal to 0b110. This is a fixed bit string which allows decoders to determine whether
a superframe is present.

bytes_per_framesize_minus_1 indicates the number of bytes needed to code each frame size.
The variable SzBytes is derived as follows:

SzBytes = bytes_per_framesize_minus_1 + 1

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 163

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

frames_in_superframe_minus_1 indicates the number of frames within this superframe.
The variable NumFrames is derived as follows:
NumFrames = frames_in_superframe_minus_1 + 1

NOTE - It is legal for a superframe to contain just a single frame and have NumFrames equal to 1.

B.4 Superframe parsing

The use of superframes is optional, and a chunk can contain either a single frame, or a superframe.
The decoder determines the presence of a superframe by:

1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110,

2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes,

3. checking that the first byte of the superframe_index matches the final byte.

If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each
frame in the superframe is passed to the decoding process in turn.

Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the
decoding process.

NOTE - This parsing process works because it is a requirement of bitstream conformance that the final
byte of a coded frame must not contain a superframe_marker.

164 Canvriaht © 2016 Gooale. Inc. All Riahts Reserved

[1]

(2]

3]
[4]

[5]

[6]

VP9 Bitstream & Decoding Process Specification - v0.6 31st March 2016

Bibliography
Recommendation ITU-R BT.601-7 (2011), Studio encoding parameters of digital television for
standard 4:3 and wide screen 16:9 aspect ratios.

Recommendation ITU-R BT.709-6 (2015), Parameter values for the HDTV standards for production
and international programme exchange.

SMPTE ST 170 (2004), Television — Composite Analog Video Signal — NTSC for Studio Applications.

SMPTE ST 240 (1999), For Television — 1125-Line High-Definition Production Systems — Signal
Parameters.

Recommendation ITU-R BT.2020-2 (2015), Parameter values for ultra-high definition television
systems for production and international programme exchange.

IEC 61966-2-1 (1999), Multimedia systems and equipment — Colour measurement and management
— Part 2-1: Colour management — Default RGB colour space — sRGB.

Convriaht © 2016 Gooale. Inc. All Riahts Reserved 165

